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We tested the suitability of the domestic pig as a model for 
Middle East respiratory syndrome coronavirus (MERS-CoV) 
infection. Inoculation did not cause disease, but a low level 
of virus replication, shedding, and seroconversion were ob-
served. Pigs do not recapitulate human MERS-CoV and are 
unlikely to constitute a reservoir in nature.

As of March 10, 2017, a total of 1,917 cases of Middle 
East respiratory syndrome coronavirus (MERS-CoV) 

infection and 684 fatalities have occurred (1). Despite the 
relatively large number of cases, little is known about the 
disease pathology of MERS in humans (2). Our current un-
derstanding of the pathogenesis of MERS-CoV is therefore 
mostly based on data derived from studies in animal mod-
els. Although the first animal model used to study MERS-
CoV pathogenesis and test potential countermeasures be-
came available shortly after the discovery of MERS-CoV 
(3), all the animal models that have been developed so far 
have drawbacks (4). Because of the host restriction con-
ferred by the binding of the MERS-CoV spike protein to 
its receptor, dipeptidyl peptidase 4 (DPP4), small animal 
models that are routinely used to conduct infectious disease 
research are not naturally susceptible to MERS-CoV in-
fection. Although human DPP4-transgenic mouse models 
have been developed, these do not completely recapitulate 
the disease pathology observed in humans. Nonhuman pri-
mate models recapitulate mild and moderate human disease 
pathology; however, practical and ethical constraints limit 
work with these models.

The domestic pig (Sus domesticus) is used in infectious 
disease research because of similarities between human 
and pig anatomy, genetics, and physiology (5). MERS-
CoV was previously shown to replicate in porcine kidney 
cells, albeit less efficiently than in human kidney cells (6). 
In an effort to develop a MERS-CoV animal model that re-
capitulates human disease better than small animal models 

without the constraints associated with nonhuman primate 
studies, we explored the possibility of using the domestic 
pig as an animal model of MERS-CoV infection.

The Study
Comparison of the DPP4 nucleotide sequences of humans, 
dromedary camels, and domestic pigs showed that the por-
cine DPP4 is identical to the dromedary camel DPP4 at the 
14 aa positions that have been shown to determine species 
tropism (Table) (8,9). We investigated whether DPP4 is ex-
pressed in the pig respiratory tract by performing immuno-
histochemical staining on the nasal mucosa and lung tissue 
obtained from healthy pigs using an antibody against DPP4 
(mouse monoclonal anti-DPP4 [CD26], clone OTI11D7, 
1:2,500; Origene Technologies, Inc., Rockville, MD, USA). 
DPP4 expression was not observed in the nasal mucosa 
of healthy domestic pigs (Figure 1, panel A); in the lungs, 
abundant DPP4 expression was observed in type I and type 
II pneumocytes and submucosal glands (Figure 1, panel B), 
suggesting MERS-CoV infection would be supported.

We inoculated 2 groups of four 4–5-week-old farm 
pigs (Yorkshire cross; S&S Farms, Ramona, CA, USA) in-
tranasally (1 mL/nostril) and intratracheally (5 mL) with a 
total dose of 106 tissue culture infectious dose 50 (TCID50) 
of the hCoV-EMC/2012 isolate of MERS-CoV. A group 
of 3 control pigs was mock inoculated with Dulbecco’s 
modified Eagle medium (DMEM); these pigs were housed 
in a separate room from the MERS-CoV–inoculated pigs 
to prevent cross-contamination. Animal experiments were 
approved by the Institutional Animal Care and Use Com-
mittee of the Rocky Mountain Laboratories and conducted 
by certified staff in an Association for Assessment and Ac-
creditation of Laboratory Animal Care International–ac-
credited facility according to the institution’s guidelines 
for animal use; staff followed the guidelines and basic prin-
ciples in the US Public Health Service Policy on Humane 
Care and Use of Laboratory Animals and the Guide for the 
Care and Use of Laboratory Animals.

After inoculation with MERS-CoV, none of the pigs 
showed clinical signs of disease, such as increased body 
temperature or increased respiration, and bodyweight gain 
was similar between MERS-CoV–inoculated and mock-
inoculated pigs (Figure 2, panel A). We collected nose and 
throat swabs during clinical exams and analyzed them for 
the presence of viral RNA by quantitative reverse tran-
scription PCR (qRT-PCR) as described (10). Shedding of 
viral RNA from the nose and the throat increased from 1 
day postinoculation (dpi) to 3 dpi in all MERS-CoV–in-
oculated animals, a sign that active replication occurred; 
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shedding was higher in the nose than in the throat (Figure 
2, panel B). After 3 dpi, shedding of viral RNA decreased; 
all nose swabs were negative by 11 dpi and all throat swabs 
by 7 dpi. 

We attempted virus propagation by inoculating VeroE6 
cells with the media used to resuspend nasal and throat swab 
particulates and checking for the development of MERS-
CoV cytopathic effect. Infectious MERS-CoV was not re-
covered at any time postinoculation from any swab sample.

On 4 and 11 dpi, we euthanized 4 MERS-CoV–in-
oculated pigs and collected their tissues for virologic 
and histologic analysis. Viral RNA could be detected by 
qRT-PCR in >1 respiratory tract tissue samples of all 4 
MERS-CoV–inoculated pigs. However, viral loads were 
low; infectious MERS-CoV could not be isolated from 
any tissues positive by qRT-PCR, and the distribution of 
viral RNA among tissues was inconsistent from pig to pig 
(Figure 2 panel C). By 11 dpi, viral RNA could only be 
detected in the bronchial lymph node of 1 MERS-CoV–
inoculated pig (Figure 2 panel C); all the tissues examined 
from other MERS-CoV–inoculated pigs were negative by 
this time. Viral RNA could not be detected in any of the 
extrarespiratory tissues tested, such as heart, liver, spleen, 
kidney, adrenal gland, duodenum, ileum, transverse colon, 
or urinary bladder, on 4 dpi or 11 dpi (data not shown). 
Histologic analysis did not reveal any lesions consistent 
with MERS-CoV infection in any of the collected tissues, 
including those of the respiratory tract. We performed im-
munohistochemical staining with an antibody specific for 
MERS-CoV on tonsil, trachea, bronchial lymph node, and 
right and left lower lung lobe of all pigs, as well as other 
tissues that tested positive for viral RNA by qRT-PCR. 
MERS-CoV antigen could not be detected in any of these 
tissues. 

Serum samples collected on the day of euthanasia were 
tested for the presence of antibodies against MERS-CoV 
spike protein 1 (S1) by ELISA. By 11 dpi, antibodies di-
rected against MERS-CoV S1 could be detected in all 4 
pigs (Figure 2, panel D).

Conclusions
Recently, Vergara-Alert et al. showed MERS-CoV shed-
ding in pigs inoculated with 107 TCID50 of MERS-CoV 
and suggested that pigs could play a role as a reservoir 
for the circulation of MERS-CoV (12). In our hands, 
pigs inoculated with a 10-fold lower infectious dose of  
MERS-CoV were also successfully infected, but the low 
amount of virus replication in and shedding from the re-
spiratory tract implies that the pig is unlikely to play a 
profound role as an intermediate host for MERS-CoV  
in nature.

 

 

 
Table. Comparison of the amino acid residues shown to be essential in binding of Middle East respiratory syndrome coronavirus spike 
protein to DPP4 of human, dromedary camel, and domestic pig* 

Species 
DPP4, aa position 

229 267 286 288 291 294 295 298 317 322 336 341 344 346 
Human† N K Q T A L I H R Y R V Q I 
Dromedary camel‡ – – – V – – – – – – – – – – 
Domestic pig§ – – – V – – – – – – – – – – 
Mouse¶ – – – P – A R – – – T S – V 
*DPP4, dipeptidyl peptidase 4; –, no change from human DPP4. 
†GenBank accession no. AB451339. 
‡GenBank accession no. KF574263. 
§GenBank accession no. NM214257. 
¶Taken from previous publication (7). 

 

Figure 1. Dipeptidyl peptidase (DPP) 4 expression in the domestic 
pig respiratory tract. Tissues were stained by using a cross-
reactive mouse monoclonal antibody against DPP4 (CD26, clone 
OTI11D7, 1:2,500; Origene Technologies, Inc., Rockville, MD, 
USA). DPP4 expression was absent in the nasal mucosa (A) 
but present in lung tissue (B) of healthy domestic pigs. Original 
magnification: nasal mucosa ×40; lung ×200. 
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Taken together, our data indicate that MERS-CoV can 
infect pigs, leading to a low level of replication in the pig re-
spiratory tract, but does not cause clinical signs of disease. 
Furthermore, viral shedding from mucosal membranes of the 
upper respiratory tract was rather limited with no infectious 
virus measurable at any time postinoculation. Thus, the pig is 
not a suitable animal disease model for MERS-CoV infection. 
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