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The incidence of group C and G Streptococcus (GCGS) 
bacteremia, which is associated with severe disease and 
death, is increasing. We characterized clinical features, out-
comes, and genetic determinants of GCGS bacteremia for 
89 patients in Winnipeg, Manitoba, Canada, who had GCGS 
bacteremia during 2012–2014. Of the 89 patients, 51% 
had bacteremia from skin and soft tissue, 70% had severe  
disease features, and 20% died. Whole-genome sequenc-
ing analysis was performed on isolates derived from 89 
blood samples and 33 respiratory sample controls: 5 closely 
related genetic lineages were identified as being more likely 
to cause invasive disease than nonclade isolates (83% vs. 
57%, p = 0.002). Virulence factors cbp, fbp, speG, sicG, 
gfbA, and bca clustered clonally into these clades. A clonal 
distribution of virulence factors may account for severe and 
fatal cases of bacteremia caused by invasive GCGS.

Group C and G Streptococcus (GCGS) are quickly be-
coming a major public health concern as the incidence 

of invasive infection and severe disease is increasing (1–6). 
In Manitoba, Canada, the incidence of GCGS bacteremia 
continues to increase, whereas the incidence of other inva-
sive β-hemolytic streptococcal infections remains constant 
(1), similar to trends observed in Finland, Denmark, and 
Israel (3–5,7). These invasive infections cause severe ill-
ness, and up to 25% of patients die (2,3,7–9), yet the factors 
contributing to disease severity and death remain unclear.

Streptococcus dysgalactiae subsp. equisimilis 
(SDSE) is responsible for most cases of GCGS infec-
tions in humans (10,11). Historically considered non-
pathogenic commensal flora, SDSE is now implicated in 
skin and soft tissue infections, pharyngitis, bacteremia, 
endocarditis, sepsis, toxic shock, and other invasive in-
fections (3,5,9,12–14) that extensively overlap with the 
clinical presentations of S. pyogenes (group A Streptococ-
cus [GAS]) infections. Similar to S. pyogenes, SDSE form 
large β-hemolytic colonies on sheep blood agar with hyal-
uronic acid capsules but express Lancefield group C or G 
carbohydrate (15) and possess M protein, which is vital in 
inhibiting complement pathway activation and resisting 
phagocytic killing (16). SDSE is genetically closely relat-
ed to S. pyogenes, sharing 61%–72% sequence homology 
(11,17). These pathogens can exchange genes through 
bacterial phages and other mechanisms (11).

Approximately 71 virulence factor genes from S. pyo-
genes have been identified in SDSE, including hemolysin, 
streptolysin, exotoxin, proteinase, adhesin, streptokinase, 
and hyaluronic acid genes (11,18). S. pyogenes and SDSE 
carry streptolysin O (slo), which is required for invasive hu-
man infection (11,19), and streptolysin S (sagA), which has 
been linked to necrotizing soft tissue infections (20). Fur-
thermore, the superantigen alleles speA, C, G, H, I, K, L, 
M, N, O, and P, which have been identified in S. pyogenes, 
have infrequently been identified in SDSE, but speJ and ssa 

are unique to GAS, and szeN, szeP, and szeF are unique to 
GCGS (21). The only commonly reported superantigen of 
SDSE is speG (11,22,23). Other commonly found virulence 
factors in SDSE are lmb, gapC, sagA, hylB, slo, scpA, and 
ska, whereas the presence of cbp, fbp, and sicG is variable 
and found only in a minority of strains (22). A conclusive 
association between virulence profile and disease propensity 
or site of isolation has not been demonstrated (18,22,24).

The monitoring of emerging pathogens requires phe-
notypic and molecular-based typing methodologies. Mul-
tilocus sequence typing (MLST) can be useful in tracking 
short-chain transmission of infections, but application of 
whole-genome sequencing for comparative studies provides 
higher resolution through a genomic epidemiology approach 
to investigate strain relatedness and dynamics. To uncover 
factors that may contribute to increased GCGS pathogenesis, 
we describe the clinical features of 89 GCGS bloodstream 
infections and the distribution of sequence types (STs) and 
virulence factors by whole-genome sequencing of 122 inva-
sive and noninvasive isolates. We conducted this study in 
accordance with the ethical principles at the University of 
Manitoba after obtaining approval from the Health Research 
Ethics Board and Research Impact Committee.

Materials and Methods
Using the records of 2 large laboratories, we retrospec-
tively identified GCGS bacteremia cases that occurred dur-
ing January 2012–December 2014 in Winnipeg, Manitoba, 
Canada. We identified 89 bacteremic events (defined as 
>1 blood culture positive for GCGS during a single hospi-
tal admission) among a total of 84 patients. We reviewed 
charts to obtain patient characteristics and clinical param-
eters for each bacteremic event. During September–De-
cember 2014, within the same geographic location as the 
study cohort, community physicians collected control pha-
ryngeal swab samples from outpatients with signs or symp-
toms of pharyngitis. The samples, which were obtained at 
the physicians’ discretion, were cultured for identification 
of pyogenic streptococci: 33 noninvasive GCGS isolates 
were detected. These GCGS isolates were recovered from 
patients with symptomatic pharyngitis, but their symptoms 
were not severe and not necessarily attributable to GCGS. 
Although these control isolates were not from asymptom-
atic volunteers, the clinical differences between invasive 
bloodstream isolates and noninvasive respiratory isolates 
were sufficient to compare genetic differences.

Disease Severity
We considered patients with >1 of the following to have se-
vere GCGS disease: in-hospital death, admission to inten-
sive care unit, need for vasopressor or ventilatory support, 
diagnosis of streptococcal toxic shock syndrome (STSS) or 
infectious endocarditis, or a high-risk Simple Clinical Score 
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>8 or Rapid Emergency Medicine Score >10. We defined 
STSS according to guidelines of the Working Group on Se-
vere Streptococcal Infections (25). We calculated Simple 
Clinical Scores and Rapid Emergency Medicine Scores 
primarily by using patient vital signs and other clinical fea-
tures; high-risk scores are associated with a 9.0%–10.3% 
risk for death by 30 days after admission (26–28).

Collection and Identification of Bacteria
At the discretion of the healthcare provider, patient blood 
samples were collected at symptom onset into BacT/Alert 
bottles (bioMérieux, Saint-Laurent, QC, Canada) accord-
ing to institutional protocol and incubated using the BacT/
Alert blood culture instrument (bioMérieux). Isolates were 
stored in frozen stocks in skim milk at −70°C and later re-
trieved by subculture for further analysis. 

A total of 92 GCGS isolates were recorded during the 
study period; 90 were retrieved, 2 were lost in storage, and 1 
was identified as S. equi subsp. zooepidemicus by 16S rRNA 
sequence similarity and excluded from the study. We plated 
the 89 remaining isolates onto sheep blood agar (Oxoid, Ne-
pean, ON, Canada) and aerobically incubated them for 24 
h at 37°C in the presence of 5% CO2. We confirmed isolate 
identification by using MALDI-TOF (matrix-assisted laser 
desorption/ionization time-of-flight) mass spectrometry with 
the MALDI BioTyper system (Bruker, Boston, MA, USA) 
according to the manufacturer’s protocol. To confirm isolates 
with ambiguous MALDI-TOF mass spectrometry identifica-
tions, we used latex agglutination to Lancefield antigens C 
and G and the Vitek2 system (bioMérieux) for biochemical 
identification. All isolates were identified as S. dysgalactiae.

Whole-Genome Sequencing
We extracted DNA from cultures, created multiplexed librar-
ies, assembled reads, and performed core nucleotide variation 
phylogenetic analyses (online Technical Appendix 1, https://
wwwnc.cdc.gov/EID/article/23/7/16-1259-Techapp1.pdf). 
In brief, we generated paired-end, 300-bp indexed reads 
on the Illumina MiSeq platform (Illumina, San Diego, CA, 
USA); the average yield was 1,015,107 reads/genome, and 
the average genomic coverage was 145×. Read quality was 
assessed by using FastQC version 0.11.4 (http://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/), assembled with 
SPAdes version 3.6.2 (http://cab.spbu.ru/software/spades/), 
and annotated with Prokka version 1.11 (http://www.vicbio-
informatics.com/software.prokka.shtml), yielding an aver-
age contig length of 39,313 bp and an average N50 contig 
length of 82,867 bp (29–31). The high-quality reads were then 
mapped to the publicly available reference genome, S. dys-
galactiae subsp. equisimilis AC-2713 (GenBank accession 
no. NC_019042.1), by using SMALT version 0.7.5 (http://
www.sanger.ac.uk/science/tools/smalt-0). Single-nucleotide  
variations (SNVs) were called using FreeBayes version 

0.9.20 (https://github.com/ekg/freebayes) and SAMtools 
mpileup (http://www.htslib.org/) (32). The percentage of 
bases in the core was 82.8%, and 21,746 sites were used to 
generate the phylogeny.

We constructed a maximum-likelihood phylogenetic 
tree of informative SNV positions by using PhyML ver-
sion 3.0 (http://www.atgc-montpellier.fr/phyml/) (33) and 
visualized the tree by using FigTree version 1.4.1 (http://
tree.bio.ed.ac.uk/software/figtree/) (34). We determined 
phylogenetic clades by cluster analysis on the full dataset 
of blood and respiratory isolates (n = 122) and on isolates 
from blood only (n = 89) by using ClusterPicker version 
1.2.4 (http://hiv.bio.ed.ac.uk/software.html) with the fol-
lowing settings: initial and main support thresholds = 0.9, 
genetic distance threshold = 4.5, and the large cluster 
threshold = 10 (34). We submitted whole-genome se-
quencing read data to the NCBI Sequence Read Archive  
(https://www.ncbi.nlm.nih.gov/sra/) under BioProject  ac-
cession no. PRJNA325743.

Molecular Typing
We used the whole-genome sequencing data for in silico 
determination of MLST STs; virulence factors (lmb, gapC, 
cba, cbp, fbp, sagA, slo, hylB, spegg, sicG, fbsA, pavA, 
fnbA, fnbB, gfbA, scpA, scpB, bca, cylE, ska, skc and skg) 
(22,35); and superantigens (speA, speB, speC, speF, spegg, 
speH, speI, speJ, speL, mf-2, mf-3, and smeZ) (21,23). We 
determined Lancefield serogroups from sequences anno-
tated with Prokka and confirmed them by serologic test-
ing using commercial latex antisera (SSI Diagnostica, 
Hillerød, Denmark). We submitted MLST allelic profiles 
to the Streptococcus dysgalactiae MLST database (https://
pubmlst.org/sdysgalactiae/). We used allelic profiles to 
compute a goeBURST (global optimal eBurst; http://www.
phyloviz.net/goeburst/) full minimum spanning tree us-
ing PHYLOViZ (http://www.phyloviz.net/) (36); groups 
were assigned by a single-locus variation from a founding 
ST. All strains were confirmed to belong to S. dysgalac-
tiae subsp. equisimilis by BLASTn (37) alignment of 16S 
rRNA sequences to reference genomes of S. dysgalactiae 
subsp. dysgalactiae ATCC27957 and S. dysgalactiae sub-
sp. equisimilis ATCC12394 (PubMed accession nos. NZ_
CM001076.1 and NC_017567.1, respectively).

Statistical Methods
We used descriptive statistics, χ2 test, Kruskal-Wallis 
test, and Fisher exact test to compare demographics be-
tween clusters of SDSE to determine whether they dif-
fered with respect to key risk factors. We used Fisher 
exact test to compare risk of death and other disease 
severity markers between ST clusters and clades. No 
observations were censored, so survival analysis tech-
niques were not necessary.
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Results

Patient Characteristics and Disease Severity
We investigated 89 GCGS bacteremic events in 84 patients 
in Winnipeg during 2012–2014. Most patients (63%) were 
male, and the mean age was 61 years (SD ± 18.4 years). 
Many patients had co-existing conditions, predominantly 
cardiovascular disease (47%) and diabetes mellitus (43%). 
The most common source of bacteremia was from skin and 
soft tissue infections (51%), and 37% of patients had pri-
mary bacteremia. Infectious endocarditis was confirmed or 
suspected in 7% of patients. No patients had necrotizing 
fasciitis or pharyngitis (Table 1).

In 70% of the cases, bacteremia was associated with 
markers of severe disease, including admission to an inten-
sive care unit (26%) and the need for vasopressor (19%) 
or ventilatory (17%) support. Seventeen percent of patients 

had a diagnosis of STSS, and 35%–61% of patients had 
high-risk disease severity scores. Twenty percent of pa-
tients with GCGS bacteremia died while in the hospital 
(Table 2).

SDSE Isolate Characteristics
SDSE isolates from blood represented 89 (73%) of 122 to-
tal isolates; 33 (37%) of the 89 isolates were from female 
patients and 56 (63%) were from male patients. These iso-
lates were classified as Lancefield groups G (63%) and C 
(37%). Respiratory isolates represented 27% (33/122) of 
the isolates; information regarding the number from female 
and male patients was not available. These isolates also 
were classified as Lancefield groups G (52%) and C (48%).

Core Single-Nucleotide Variation  
Phylogenetic Analysis
Phylogenetic analysis of all 122 isolates showed no as-
sociation between infection type and patient sex, age, or 
disease severity (online Technical Appendix 1 Figure). 
Compared with the heterogeneous nonclade isolates, those 
that clustered into clades A–E represented a higher propor-
tion of blood isolates (25/45 [57%] vs. 64/77 [83%], re-
spectively; p = 0.002). In addition, compared with the other 
clades combined, clade A was represented by significantly 
fewer blood isolates (36/38 [95%] vs. 28/39 [72%], respec-
tively; p = 0.017). In silico molecular determinants (MLST, 
Lancefield serogroups, and virulence factors) were clus-
tered in a clonal distribution (online Technical Appendix 
1 Figure). However, we found no significant associations 
when comparing blood and respiratory isolates.

Cluster analysis of the 89 blood isolates yielded 5 
clades, A–E (n = 64); the other 25 heterogeneous isolates 
were outside these lineages. Clade A isolates were Lance-
field serogroup C, clades B–E were serogroup G, and the 
heterogeneous nonclade isolates were serogroups C (n 
= 5) and G (n = 20) (Figure 1). Isolate numbers 35, 49, 
26, 40, 47, 45, and 51 were most genetically distant from 
the other blood isolates, averaging 3,897–3,987 SNVs. 

 

 

 
Table 1. Demographic and other variables among patients with 
group C and G Streptococcus bacteremia causing severe 
infections, Winnipeg, Manitoba, Canada, 2012–2014* 
Patient variable Value 
Demographic characteristic  
 Median age, y  SD 61 ± 18.4 (0–99) 
 Age groups, y  
  <18 1/89 (1) 
  18–64 52/89 (58) 
  >65 36/89 (40) 
 Sex  
  M 56/89 (63) 
  F 33/89 (37) 
Medical history†  
 Active alcohol abuse 12/88 (14) 
 Active malignancy 16/88 (18) 
 Active smoker 17/88 (19) 
 Asthma or COPD 12/88 (14) 
 Cardiovascular disease 41/88 (47) 
 Chronic kidney disease 25/88 (28) 
 Diabetes mellitus 38/88 (43) 
 Dialysis dependent 10/88 (11) 
 History of intravenous drug use 3/88 (3) 
 Immunosuppressive drug use 11/88 (13) 
 Total parental nutrition 3/88 (3) 
 No predisposing conditions 8/88 (9) 
Clinical source of bacteremia‡  
 Skin and soft tissue infection 43/84 (51) 
 Intraabdominal or gastrointestinal infection 3/84 (4) 
 Pharyngitis 0/84 
 Osteomyelitis and discitis 1/84 (1) 
 Meningitis 1/84 (1) 
 Septic arthritis 2/84 (2) 
 Infectious endocarditis 6/84 (7) 
 Primary bacteremia without source 31/84 (37) 
Clinical characteristic§  
 Temperature >38C 48/83 (58) 
 Mean arterial pressure <80 mm Hg 50/82 (61) 
 Heart rate >90 beats/min 63/83 (76) 
 Glasgow Coma Scale <15 36/84 (43) 
*Values are no. patients in category/total no. patients with data available 
(%) except as indicated. COPD, chronic obstructive pulmonary disease. 
†Data missing for 1 patient. 
‡Data missing for 5 patients. 
§Data missing or partially missing for 7 patients. 

 

 

 

 
Table 2. Death and markers of disease severity among patients 
with group C and G Streptococcus bacteremia causing severe 
infections, Winnipeg, Manitoba, Canada, 2012–2014* 
Disease severity marker Value 
Death 18/89 (20) 
Severe disease 62/89 (70) 
 Streptococcal toxic shock syndrome† 14/82 (17) 
 Rapid Emergency Medicine Score >10† 29/82 (35) 
 High-risk Simple Clinical Score >8† 50/82 (61) 
 Vasopressor support required† 16/84 (19) 
 Ventilatory support required† 14/84 (17) 
 Admission to intensive care unit required† 22/84 (26) 
*Values are no. patients in category/total no. patients with data available 
(%) except as indicated. 
†Data missing or partially missing for 5–7 patients. A Rapid Emergency 
Medicine Score >10 and Simple Clinical Score >8 is considered high risk 
and associated with a 9.0%–10.3% risk of death. 
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Figure 1. Maximum-likelihood whole-genome, core single-nucleotide variation (SNV) phylogenetic tree of 89 Streptococcus dysgalactiae 
subsp. equisimilis isolates from the blood of patients with group C and G Streptococcus causing severe infections, Winnipeg, Manitoba, 
Canada, 2012–2014. Multilocus sequence typing clonal complex relatedness groups were determined by using goeBURST (global 
optimal eBurst; http://www.phyloviz.net). In the mortality column, red and white squares indicate patient death and survival, respectively. 
In the severity column, red and white squares represent manifestation of severe and nonsevere disease, respectively. Black and 
white squares indicate the presence and absence of virulence factor genes, respectively. Scale bar indicates estimated evolutionary 
divergence between isolates, based on the average genetic distance between strains (estimated substitutions in sample/total high-
quality SNVs). MLST, multilocus sequence type; SG, serogroup; ST, MLST; Y, year; M, mortality; S, severity; 1, cbp; 2, fbp; 3, speG; 4, 
sicG; 5, gfbA; 6, bca.
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The greatest difference was 5,110 SNVs between isolate  
numbers 30 and 51 (online Technical Appendix 2, https://
wwwnc.cdc.gov/EID/article/23/7/16-1259-Techapp2.
xlsx). Clade C was the most genetically homogenous, 
showing a maximum of 138 SNVs between isolates in the 
clade. Clade B was the most diverse, showing a maximum 
difference of 600 SNVs between isolates (online Techni-
cal Appendix 1 Table 1).

MLST
STs for all 122 isolates generally correlated with specific 
phylogenetic clades and subclades (Figure 1; online Tech-
nical Appendix 1 Figure). The most common STs were 
ST20 (n = 28), followed by ST17 (n = 16) and ST15 (n = 
9) (Figure 2). Clade A (n = 28) consisted entirely of ST20 
isolates belonging to a singleton MLST relatedness group. 
Clade B (n = 13) belonged to MLST clonal complex (CC) 
2, in which ST15 (n = 9), ST69 (n = 1), and ST274 (n = 2) 
isolates grouped into subclades. An isolate with ST276 (a 
double-locus variant of ST15) also clustered into clade B. 
Clades C (n = 14) and D (n = 5) belonged to MLST CC1; 
clade C consisted of ST17 isolates, and clade D consisted 
of ST282 isolates. Clade E (n = 4) belonged to MLST CC3, 
in which ST63 (n = 2), ST52 (n = 1), and ST164 (n = 1) 
isolates grouped into subclades. Although SNV phyloge-
netic analysis showed that ST17 (clade C) and ST15 (clade 

B) isolates were closely related, large variations in MLST 
separated them into distinct clonal clusters (Figure 2). 

A total of 18 STs were unique to blood isolates: STs 
4, 8, 38, 44, 52, 59, 63, 84, 138, 154, 265, 269, 270, 274, 
275, 276, 279, and 282. A total of 8 STs were unique to 
respiratory isolates: STs 49, 68, 206, 266, 273, 277, 280, 
and 283 (Figure 3).

Invasive Polymicrobial Infections
Polymicrobial bacteremia with organisms other than 
GCGS alone was present in 18% (16/89) of patients. In 
4 patients with non-GCGS organisms plus GCGS isolates 
(i.e., isolate nos. 3 and 57, which clustered in clade B; 
and nonclade nos. 12 and 74), the non-GCGS organisms 
were believed to represent 1) contaminants at the time of 
sample collection or 2) the nonprimary pathogen. Staphy-
lococcus aureus co-infection was seen in 6 patients. Four 
patients had GCGS isolates that clustered into clade C 
(nos. 41, 70, 82, 85), and the isolates were all associated 
with severe disease features (online Technical Appendix 
Table 2). Two of the 4 patients died.

Distribution of Virulence Factors
All 122 isolates carried virulence factors gapC, hylB,  
lmb, sagA, scpA, scpB, ska, skc, skg, and slo; however, 
virulence factors cba, cfb, cylE, fbsA, fnbA, and pavA were 

Figure 2. Minimum spanning tree representing the genetic relatedness of multilocus sequence types (MLSTs) of Streptococcus 
dysgalactiae subsp. equisimilis isolates from patients with group C and G Streptococcus causing severe infections, Winnipeg, Manitoba, 
Canada, 2012–2014. Genetic relatedness was determined by full goeBURST (global optimal eBurst; http://www.phyloviz.net) analysis 
using Streptococcus dysgalactiae MLST allelic profiles of 7 housekeeping genes. Numbers on nodes correspond to individual sequence 
types (STs) and colored nodes correspond to clonal cluster relatedness groups defined by a single-locus variation from a founding ST. 
Number labels on branches indicate the number of allelic variations between STs; branch lengths are not to scale.
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universally absent. Other factors were variably present (Ta-
ble 3). Factors cbp, fbp, speG, sicG, gfbA, and bca clustered 
clonally into the phylogeny (Figure 1). All clade A and B 
isolates contained only speG, with the exception of 1 clade 
B isolate that also contained cbp, sicG, and gfbA. Clade 
C consisted of isolates with cbp, sicG, and gfbA; clade D 
isolates had cbp, fbp, and sicG; and clade E isolates had 
fbp, speG, and sicG. The virulence factor fbp was present 
in clades D and E and in 1 nonclade isolate (no. 28). Viru-
lence factor bca was found variably in 5 nonclade isolates 
(nos. 49, 75, 74, 33, and 11) and in the reference isolate, 
AC-2713, which also contained genes speG and sicG. No 
association was discovered between the presence of these 
virulence factors and disease severity.

Clinical Outcomes within the Phylogeny
Severe disease features were present in a similar propor-
tion of patients with GCGS disease caused by clade A–E 
isolates (63%, 40/64 patients) and heterogeneous nonclade 
isolates (68%, 17/25 patients). There was an observed trend 
toward increased mortality in patients with isolates from 
clades A–E (14 deaths) compared with patients with non-
clade isolates (4 deaths), although the difference was not 
statistically significant (p = 0.7698). The number of deaths 
resulting from GCGS bacteremia caused by the most com-
mon clades, A–C (13/55 [24%]), was not significantly dif-
ferent than the number caused by other clades (5/34 [15%]; 
p = 0.4179). The death rate was also higher among patients 
with ST15, ST20, and ST17 (26% [14/53 patients]) than 
among patients with other STs (11% [4/36 patients]), but 
the difference was not significant (p = 0.1075). 

Discussion
Our findings from this large study of the genomic epide-
miology and molecular determinants of invasive GCGS 
bacteremia in association with the clinical features and  

outcomes of disease contribute to an evolving understand-
ing of the changing epidemiology of β-hemolytic strepto-
coccal infections. Similar to the findings of others (10), our 
findings showed that invasive infection is more common 
among older persons with underlying medical conditions. 
Although host factors probably contribute to changing epi-
demiology, enhanced GCGS virulence should be consid-
ered a contributor to the rising incidence of GCGS bac-
teremia. We observed rates of severe disease (70%), ICU 
admission (26%), and toxic shock syndrome (17%) that 
were higher than those from previous reports, suggesting 
increased GCGS virulence (8). Death occurred among 17 
(20%) of the 84 patients with invasive GCGS bacteremia, a 
finding consistent with those in other reports (7–10).

As expected, skin and soft tissue infections served 
as the main portal of entry in more than half the cases of 
invasive GCGS bacteremia; however, primary bactere-
mia without alternate sources of infection was seen in a 
higher proportion (37%) of cases than seen in other reports 
(3,5,14). Infections without a source of bacteria entry could 
represent more effective bacterial penetration of skin and 
mucosal barriers and evasion of the host immune response 
due to enhanced pathogenic mechanisms.

Organisms in clades B–E were entirely Lancefield 
group G and had higher rates of invasive infections, pos-
sibly suggesting acquired genetic determinants are contrib-
uting to increased virulence and evolutionary selection of 
these clades. However, in this study, no single genetic de-
terminant could account for an organism’s ability to cause 
invasive infection. Although respiratory tract isolates in our 
study served as noninvasive controls, they were collected 
from persons with symptomatic pharyngitis, in whom host 
defenses might prevent severe infection and invasion into 
the blood stream. Host defenses may have obscured recog-
nition of a shared invasion factor that could not be detected 
in our comparisons. 

Figure 3. Prevalence 
of sequence types, as 
characterized by multilocus 
sequence typing, among blood 
and respiratory isolates of 
Streptococcus dysgalactiae 
subsp. equisimilis from 
patients with group C and G 
Streptococcus causing severe 
infections, Winnipeg, Manitoba, 
Canada, 2012–2014.
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The virulence factor profiles we described were simi-
lar to those previously reported (11,18,22,23,35). However, 
sicG was present in a substantially higher proportion of iso-
lates in our study (38.5%) than in another study (9.0%) (18), 
and it was primarily within clades C–E. The gene for bca, 
which has only rarely been described in SDSE, was present 
in a minority of our isolates (9.0%). The superantigen speG 
gene was found to cluster in Lancefield groups C and G, be-
longing to clades A and B, respectively, and was present in a 
proportion of isolates similar to that described in other reports 
(18,22). The reference isolate, AC-2713, also possessed all 
3 of these virulence factors. All other superantigens found in 
GAS were absent from the isolates in our study.

The toxin gene sagA was present in all invasive and 
noninvasive isolates in our study. Although this toxin has 
previously been implicated in necrotizing skin and soft tis-
sue infections (20), we did not confirm these findings in our 
study. No cases of necrotizing fasciitis were present in the 
study cohort; however, skin and soft tissue infections were 
common and severe, requiring surgical intervention in 17 
(19%) of the 89 patients with bacteremia.

A specific cluster within clade C organisms was asso-
ciated with polymicrobial bacteremia with S. aureus. All 4 

patients co-infected with S. aureus and clade C GCGS or-
ganisms had severe infections: 2 patients, 1 of whom died, 
required renal replacement therapy; 1 was an intravenous 
drug user with endocarditis; and 1 was a 60-year-old man 
with diabetes who sought medical care for STSS from an 
unknown source and subsequently died. All isolates had 
cbp, sicG, and gfbA virulence factors. Three of the 4 pa-
tients had risk factors for endovascular infection; however, 
the clustering of these organisms may suggest a synergistic 
effect of co-infection and invasion with S. aureus.

Overall, the rising incidence and severity of invasive 
GCGS infections are probably associated with several 
evolving bacterial virulence factors. These factors prob-
ably take advantage of aging hosts with complex chron-
ic diseases, susceptibilities, and co-existing conditions. 
Although our findings did not show a single virulence 
factor to account for emerging virulence, clonal cluster-
ing of factors within clades causing invasive infection 
suggests a survival and invasion advantage over clades 
without similar virulence clusters. Antimicrobial pres-
sure may lead to accelerated transfer of genetic material, 
leading to acquisition of virulence factors. Furthermore, 
it is possible that newly acquired or novel virulence  

 

 

 
Table 3. Distribution of virulence factor genes in blood and respiratory isolates of Streptococcus dysgalactiae subsp. equisimilis from 
patients with group C and G Streptococcus bacteremia causing severe infections, Winnipeg, Manitoba, Canada, 2012–2014 

Gene Gene product 
No. isolates positive for virulence factor/no. tested (%) 

Reference Total isolates Blood isolate Respiratory isolate 
Adhesins      
 gapC Glyceraldehyde 3-P dehydrogenase 122/122 (100) 89/89 (100) 33/33 (100)  (22) 
 Lmb Laminin-binding surface protein 122/122 (100) 89/89 (100) 33/33 (100)  (22) 
 fnbB Fibronectin-binding protein 120/122 (98.4) 89/89 (100) 31/33 (94)  (35) 
 fnB Fibronectin-binding protein 120/122 (98.4) 89/89 (100) 31/33 (94)  (35) 
 cbp Collagen-binding protein 34/122 (27.9) 29/89 (33) 5/33 (15)  (22) 
 gfbA Fibronectin-binding protein 32/122 (26.2) 24/89 (30) 8/33 (24)  (35) 
 fbp Fibronectin-binding protein 11/122 (9.0) 10/89 (11) 1/33 (3)  (22) 
 fbsA Fibrinogen-binding protein 0/122 0/89 0/33  (35) 
 pavA Adherence and virulence protein A 0/122 0/89 0/33  (35) 
 fnbA Fibronectin-binding protein 0/122 0/89 0/33  (35) 
Antiphagocytosis      
 cba C protein  antigen 0/122 0/89 0/33  (35) 
Complement protease      
 scpA C5a peptidase 122/122 (100) 89/89 (100) 33/33 (100)  (22,35) 
 scpB C5a peptidase 122/122 (100) 89/89 (100) 33/33 (100)  (35) 
Exoenzyme      
 hylB Hyaluronidase 122/122 (100) 89/89 (100) 33/33 (100)  (22,35) 
Invasion      
 bca C protein  antigen 11/122 (9.0) 5/89 (6) 6/33 (18)  (35) 
Streptokinases      
 ska Streptokinase 122/122 (100) 89/89 (100) 33/33 (100)  (22) 
 skc Streptokinase 122/122 (100) 89/89 (100) 33/33 (100)  (35) 
 skg Streptokinase 122/122 (100) 89/89 (100) 33/33 (100)  (35) 
Toxins      
 sagA Streptolysin S 122/122 (100) 89/89 (100) 33/33 (100)  (22) 
 slo Streptolysin O 122/122 (100) 89/89 (100) 33/33 (100)  (22) 
 speG Streptococcus pyrogenic exotoxin G 81/122 (66.4) 58/89 (65) 23/33 (70)  (22) 
 cylE  hemolysin/cytolysin 0/122 0/89 0/33  (35) 
 Cfb CAMP factor 0/122 0/89 0/33  (35) 
Other      
 sicG Streptococcal inhibitor of a 

complement 
47/122 (38.5) 35/89 (39) 12/33 (36)  (22) 
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factors not previously described in other β-hemolytic 
streptococci are present.

In conclusion, the frequency of invasive GCGS infec-
tions is surpassing that of GAS infections in patients in 
Manitoba, Canada, and these infections are associated with 
severe disease and death. Related strains that cluster clon-
ally are more likely than others to cause invasive disease. 
The clonal distribution of virulence factors, in combination 
with host factors, is probably contributing to the emergence 
of invasive GCGS.
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