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During 2014-2016, we conducted mosquito-based Zika vi-
rus surveillance in Rio de Janeiro, Brazil. Results suggest
that Zika virus was probably introduced into the area during
May—November 2013 via multiple in-country sources. Fur-
thermore, our results strengthen the hypothesis that Zika
virus in the Americas originated in Brazil during October
2012—May 2013.

Zika virus is an emerging arthropod-borne virus that
was first isolated from sentinel rhesus macaques in
1947 in Africa. Zika virus caused outbreaks of disease
in the Pacific region and emerged in northeastern Brazil
in March 2015, followed by Rio de Janeiro in May 2015
(1-3). The Aedes aegypti mosquito is considered the main
vector of Zika virus in urban and suburban areas through-
out the world, including Brazil, where the mosquito has
been confirmed, together with Ae. albopictus mosquitoes,
as a vector for the virus (4). Entomologic surveillance
for arboviruses in field-trapped mosquitoes is a critical
tool for identifying local natural vectors and key sites
for increased transmission risks as well as for predicting
arbovirus epidemics (5,6). Therefore, virus surveillance
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based on field-trapped mosquitoes is a vital tool for public
health authorities.

We conducted a surveillance program for mosquito-
borne viruses during February 2014—June 2016 in Man-
guinhos neighborhood in Rio de Janeiro, Brazil. We col-
lected mosquitoes on a weekly basis by using portable
backpack aspirators and transported them on dry ice to the
Nucleo Operacional Sentinela de Mosquitos Vetores-Nos-
move/Fiocruz in Rio de Janeiro, where they were counted
and their sex and species level were determined.

The collected mosquitoes included a total of 417 en-
gorged female mosquitoes (406 Ae. aegypti and 11 Ae. al-
bopictus mosquitoes), which we pooled (n = 178) and sub-
jected to Zika virus detection using real-time RT-PCR (7).
Two of the pools (C20 and P52) were confirmed positive
for Zika virus by conventional PCR (§). Pool C20 com-
prised 2 Ae. aegypti mosquitoes obtained in April 2015
from a household located in the Jodo Goulart Park in Man-
guinhos; sample P52 comprised 1 Ae. aegypti mosquito
obtained in January 2016 during a mosquito-collecting ac-
tivity in a junkyard located in the Sao Pedro slum in Man-
guinhos. Sanger sequencing of the amplified fragments ()
confirmed the presence of Zika virus in pools C20 and P52,
and we subjected both pools to deep sequencing to obtain
larger fragments of the genome.

We performed phylogenetic and phylogeographic anal-
yses based on the near-complete envelope gene sequences
of Zika virus from the 2 positive mosquito pools and on all
available sequences for Asian genotype Zika virus strains
responsible for outbreaks in the Americas. The analyses re-
vealed that strains from pools C20 and P52 (GenBank ac-
cession nos. KY354186 and KY354187, respectively) clus-
tered within the same strongly supported lineage, which
included strains detected in Rio de Janeiro and other parts
of Brazil in late 2015 and in 2016 (online Technical Appen-
dix Figure, https://wwwnc.cdc.gov/EID/article/23/8/16-
2007-Techapp!.pdf). The mosquito-derived Zika virus de-
tected in January 2016, strain P52, subsequently formed a
subclade with human-derived Zika virus strains from Rio
de Janeiro detected during March—April 2016. Further-
more, some previously reported human-derived Zika virus
strains from Rio de Janeiro clustered in different lineages
(online Technical Appendix Figure). The time-resolved
phylogeny including the 2 mosquito strains from this study
suggests that Zika virus was probably introduced in Rio
de Janeiro during May—November 2013. The time to most
recent common ancestor of Zika virus from the Americas is
estimated to be October 2012—-May 2013. These results fur-
ther strengthen the hypothesis that Zika virus in the Ameri-
cas originated in Brazil (9). The different clustering pattern
of sequences of the human-derived Zika virus from Rio de
Janeiro suggests that multiple Zika virus lineages may be
circulating in Rio de Janeiro State.
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In this study, we detected Zika virus RNA in 2 pools
of engorged Ae. aegypti mosquitoes that were collected
during a mosquitoborne virus surveillance program in
Rio de Janeiro. Information regarding Zika virus infection
rates is lacking for female and male mosquitoes trapped in
the field. However, experiments performed in the labora-
tory demonstrated transovarial transmission of Zika virus
among Ae. aegypti mosquitoes and revealed a minimal fil-
ial infection rate of 1:290 (/0). Mosquitoborne virus sur-
veillance provides an early warning for arbovirus circula-
tion, points out high-risk areas for virus transmission, and
provides data for directing control measures. Furthermore,
future surveillance-based studies should further illuminate
Zika virus ecology and patterns of spatial dynamics.

In conclusion, we showed the presence of Zika virus in
engorged Ae. aegypti mosquitoes trapped in Rio de Janeiro
before the first case of autochthonous Zika virus disease
was diagnosed in the city (3). This finding emphasizes the
importance and benefit of routine entomologic surveillance
programs to public health in terms of ensuring timely im-
plementation of disease prevention and control measures.
Furthermore, considering that the analyzed Zika virus from
Rio de Janeiro clustered in different lineages, our phylo-
genic analysis suggests multiple introductions of Zika virus
from other regions of Brazil, rather than from outside the
country, and an early presence (2013) of Zika virus in Rio
de Janeiro State.
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Technical Appendix Figure. Bayesian maximum clade credibility (MCC) tree representing the time-scale
phylogeny of the Zika virus outbreaks in the Americas. The time-scaled phylogeny was performed by
using the Bayesian Markov chain Monte Carlo tree-sampling method with BEAST version 1.8.3

(http://beast.bio.ed.ac.uk/) and in parallel the maximum-likelihood method (not shown) using PhyML 3.0

(http://www.atgc-montpellier.fr/phyml/versions.php) with 1,000 pseudoreplicates based on near-complete

envelope coding region sequences. The Akaike information criterion was chosen as the model selection
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framework, and the general time-reversible plus gamma distribution plus invariable site model was
chosen as the best model. The Bayesian molecular clock phylogeny was estimated by using a strict
molecular clock and Bayesian skyline coalescent prior. The posterior probability distributions were

visualized by using Tracer version 1.6 (http://tree.bio.ed.ac.uk/software/tracer/). The colored branches of

MCC trees represent the most probable geographic location of their descendant nodes (see figure key).
Zika virus sequences generated from viruses derived from mosquitoes in this study are in red and bold.
Blue horizontal bars represent 95% Bayesian credible intervals for divergence dates. Asterisks at the
nodes represent posterior probability values (clade credibility>90%) and percentage bootstrap support
values (>70%) based on 1,000 replicates. GenBank accession numbers, country of origin, and year of
detection for sequences used to construct the tree are indicated on the branches. For Zika virus strains
from Brazil, the location and the states of origin have been included. Brazil states: BA, Bahia; CE, Ceara;
MA, Maranh@o; PA, Para; PB, Paraiba; RJ, Rio de Janeiro; RN, Rio Grande do Norte; SP, S&o Paulo.
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