sibling (OR 25.1, 95% 6.3–99.8) or community (OR 13.2, 95% 2.27–76.7) controls.

Our study had 1 main limitation: patients and controls were selected from the same village and shared the same environmental risk factors. Despite overmatching that underestimated the strength of association, the odds ratios for O. tsutsugamushi IgM and IgG positivity were significant. We concluded that the presence of higher levels of O. tsutsugamushi IgM and IgG among AES case-patients than among controls indicates a role for scrub typhus in the etiology of AES in Gorakhpur.

Acknowledgments

We thank the members of the expert group on Research-Cum-Intervention project on AES/JE for their inputs on the study findings. We are grateful to Anita Mehta, S.K. Srivastava, and Bhoopendra Sharma for their cooperation. Thanks are also due to Mr. Karunakaran and Mr. Magesh for their technical support.

The study was funded from an extramural grant by the Indian Council of Medical Research, New Delhi.

Dr. Mittal is the head of the Department of Pediatrics at BRD Medical College, Gorakhpur, India. Her research interests include central nervous system infections among children.

References

http://apps.who.int/iris/bitstream/10665/68334/1/WHO_V&B_03.01_eng.pdf

Address for correspondence: Manoj V. Murhekar, National Institute of Epidemiology, Indian Council of Medical Research R-127, Tamil Nadu Housing Board, Ayapakkam Chennai 600077, India; email: mmurhekar@nicmr.org.in

Human Infection with Burkholderia thailandensis, China, 2013

Kai Chang, Jie Luo, Huan Xu, Min Li, Fengling Zhang, Jin Li, Dayong Gu, Shaoli Deng, Ming Chen, Weiping Lu

Author affiliations: Third Military Medical University, Chongqing, China (K. Chang, J. Luo, H. Xu, M. Li, F. Zhang, J. Li, S. Deng, M. Chen, W. Lu); Shenzhen Academy of Inspection and Quarantine, Guangdong, China (D. Gu)

DOI: https://doi.org/10.3201/eid2308.170048

Burkholderia thailandensis infection in humans is uncommon. We describe a case of B. thailandensis infection in a person in China, a location heretofore unknown for B. thailandensis. We identified the specific virulence factors of B. thailandensis, which may indicate a transition to a new virulent form.

Burkholderia thailandensis is closely related to B. pseudomallei, the causative agent of melioidosis (1). B. thailandensis shares most virulence factors and extensive genomic similarity with B. pseudomallei but can be distinguished by its ability to assimilate arabinose and different rRNA sequences (2,3). Little is known about B. thailandensis infection in humans. Two case reports described soft tissue infection and pneumonia with sepsis in Thailand and the United States (4,5). We describe a clinical investigation of human infection with B. thailandensis in Chongqing, China.

In October 2013, a 67-year-old man in Chongqing was hospitalized with a 13-day history of fever, productive
cough with white sputum, and shortness of breath. Symptoms had not improved after antimicrobial drug treatment at a local clinic. The patient denied contact with any sick persons and any environmental exposure. Empirical treatment with meropenem was used to prompt resolution of the patient’s symptoms before culture results were received. During the 6-day treatment course, the patient was transferred to Chongqing Infectious Disease Hospital for treatment. Subsequently, his general condition worsened, and his family wished to have him close to home. He was discharged and died 2 days later.

Laboratory evaluations of blood samples performed at the time of the patient’s admission showed a leukocyte count of 20.72×10^9 cells/L with a markedly elevated 91.5% neutrophils, aspartate aminotransferase level of 75.5 U/L (reference range 15.0–40.0 U/L), alanine aminotransferase level of 85.0 U/L (reference range 9.0–50.0 U/L), interleukin-6 level of 352.1 pg/mL (reference range 0–7 pg/mL), and procalcitonin level of 24.37 ng/mL (reference range 0–0.25 ng/mL). A computed tomography scan of the patient’s chest showed a thick-walled cavitary lesion at the posterior segment of the right upper lobe measuring 7.9 \times 6.1 cm and multiple nodules in both lung fields (online Technical Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/23/8/17-0048-Techapp1.pdf).

On day 6 of the patient’s hospitalization, we observed via microscopy that the positive blood culture contained many gram-negative rod-shaped bacteria (online Technical Appendix Figure 2, panel A). The colonies were smooth and glossy, with silver pigmentation, on sheep blood agar (online Technical Appendix Figure 2, panel B). The VITEK 2 COMPACT system (bioMérieux, Marcy L’Étoile, France) identified the isolated strain as *B. pseudomallei* (97% probability; bionumber 0003451513500211). The API 20NE system (bioMérieux) also identified the isolated strain as *B. pseudomallei* (50.5% probability; index 1157577). However, the biochemical profiles of the API 20NE system, including arabinose assimilation, identified the isolated strain as *B. thailandensis*, based on the mode of artificial interpretation. We analyzed the 16S rDNA sequence of strain BPM with nucleotide BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and found a 100% similarity with *B. thailandensis* (GenBank accession nos. CP000085.1 and CP000086.1).

These results indicate that commercially available phenotypic assays are not ideal for the identification of

Figure. Virulence comparison of *Burkholderia thailandensis* isolated from a man in Chongqing, China, compared with *B. thailandensis* E264 (strain ATCC 700388). A) Survival pattern of 5 BALB/c mice intraperitoneally challenged with 10^7 CFU and followed up for 7 days after challenge. B) Histopathologic characteristics of *B. thailandensis* intraperitoneal infection in the mice. Sections were stained with hematoxylin and eosin (original magnification $\times 40$).
B. thailandensis, which has not yet been incorporated into the databases of identification systems (6,7). Moreover, the arabinose assimilation proved to be an effective, simple, and accurate method for differentiating B. thailandensis from B. pseudomallei. When B. pseudomallei is presumptively identified, arabinose assimilation should be emphasized in clinical laboratories.

We compared the virulence of the isolated strain with B. thailandensis E264 (strain ATCC 700388) in BALB/c mice. B. thailandensis E264 is an environmental isolate from northeast Thailand. The clinically isolated B. thailandensis from this study was defined as strain BPM. Groups of 5 mice were inoculated with 10^7 CFU of each isolate and observed for a period of 7 days after infection. Four fifths of the mice infected with strain BPM died within 1 week of challenge. B. thailandensis could be isolated from the bloodstream of mice at the time of death. In contrast, all mice with B. thailandensis E264 infection survived over a 1-week monitoring period (Figure, panel A). The histologic findings were notable for early dissemination to the liver and lung (Figure, panel B). We observed multiple large, necrotizing foci in the livers of mice infected with strain BPM and alveolar-based neutrophilic inflammation in the strain BPM infection group. In addition, the inflammatory infiltrate and lung hyperemia were raised in the BPM-infected mice. This finding is consistent with the clinical case in our study, which appeared as pneumonia and sepsis. Overall, these experiments confirm that strain BPM is a virulent pathogen.

We performed comparative genomics to reveal the pathogenic mechanism of strain BPM. The BPM strain and B. thailandensis species share a large proportion of virulence factors. When compared with the reference genome sequences of B. thailandensis E264, B. thailandensis 2002721723, and B. thailandensis E444, the specific virulence factors of VirB/VirD4 type IV secretion system, HSI-I, and WcbR were indicated in strain BPM (online Technical Appendix Table) (8–10). These specific virulence factors may represent a transition toward a new virulent form.

In conclusion, when considering B. pseudomallei infection, clinicians should also consider the possibility of B. thailandensis infection. B. thailandensis is not identified with use of commercially available phenotypic assays and may be mistaken for B. pseudomallei. In the future, deep analysis of the complete genome would be helpful in understanding the evolution of B. thailandensis and its adaptation to the environment.

This study was supported by the National Natural Sciences Foundation of China (grant nos. 81401751, 81171667), Shenzhen Science and Technology Research and Development Fund (grant no. CXZZ2015504163004339), and the Guangdong Science and Technology Project (grant no. 20160223).

Dr. Chang is a medical doctor at the Third Military Medical University in Chongqing, China. His main research interests are medical microbiology and molecular diagnostics.

References

Address for correspondence: Weiping Lu or Ming Chen, Institute of Surgery Research, Daping Hospital, Third Military Medical University Department of Clinical Laboratory Medicine, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China; email: luweiping19710416@163.com or chmingsh1971@126.com
Human Infection with *Burkholderia thailandensis*, China

Technical Appendix

Technical Appendix Table. Specific virulence factors of *Burkholderia thailandensis* strain BPM

<table>
<thead>
<tr>
<th>Gene_ID</th>
<th>Location</th>
<th>Subject_ID</th>
<th>Virulence factors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPMGL</td>
<td>Scaffold1</td>
<td>VFG2240</td>
<td>VirB/VirD4 type</td>
<td>VirB11–VirB11</td>
</tr>
<tr>
<td>000044</td>
<td>53896–54636</td>
<td></td>
<td>IV secretion system</td>
<td>protein homolog</td>
</tr>
<tr>
<td>BPMGL</td>
<td>Scaffold2</td>
<td>VFG2063</td>
<td>HSI-I</td>
<td>IcmF1-hypothetical protein</td>
</tr>
<tr>
<td>003055</td>
<td>916394–919261</td>
<td></td>
<td></td>
<td>Capsular polysaccharide</td>
</tr>
<tr>
<td>BPMGL</td>
<td>Scaffold3</td>
<td>VFG2548</td>
<td>WcbR</td>
<td>biosynthesis fatty acid synthase</td>
</tr>
<tr>
<td>004458</td>
<td>480105–482003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Appendix Figure 1. Computed tomography scan of patient's chest showing a thick-walled cavitary lesion in the right chest. A) Cross section. B) Longitudinal section.
Technical Appendix Figure 2. A) Smooth and glossy colonies of *Burkholderia thailandensis* with a silver pigmentation on a blood agar plate. B) The gram-negative rod-shaped bacilli were observed by using Gram staining (original magnification ×1,000).