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The ability to generate high-quality sequence data in a pub-
lic health laboratory enables the identification of pathogenic 
strains, the determination of relatedness among outbreak 
strains, and the analysis of genetic information regarding 
virulence and antimicrobial-resistance genes. However, 
the analysis of whole-genome sequence data depends on 
bioinformatic analysis tools and processes. Many public 
health laboratories do not have the bioinformatic capabili-
ties to analyze the data generated from sequencing and 
therefore are unable to take full advantage of the power of 
whole-genome sequencing. The goal of this perspective is 
to provide a guide for laboratories to understand the bio-
informatic analyses that are needed to interpret whole-ge-
nome sequence data and how these in silico analyses can 
be implemented in a public health laboratory setting easily, 
affordably, and, in some cases, without the need for inten-
sive computing resources and infrastructure.

Next-generation sequencing (NGS), also known as 
high-throughput sequencing, has affected many 

fields in the study of biology but has dramatically changed 
the field of genomics by enabling researchers to quickly 
sequence whole microbial genomes, profile gene expres-
sion by sequencing RNA, examine host–pathogen inter-
actions, and study the vast microbial diversity in humans 
and the environment (1). Despite the benefits of NGS over 
traditional Sanger sequencing methods, public health lab-
oratories (PHLs) have been slow to implement this revo-
lutionary technology. According to the Association of 
Public Health Laboratories, no PHLs had NGS capabili-
ties before 2010 (2). The Centers for Disease Control and 
Prevention (CDC), through its Advanced Molecular De-
tection program, has supported the adoption of NGS and 
whole-genome sequencing (WGS) by providing funding 
and training to PHLs. By the end of 2015, CDC’s support 
had enabled 37 PHLs to acquire NGS instrumentation, 
with another 9 PHLs gaining NGS technology by the end 
of 2016 (2).

For laboratory surveillance of foodborne diseases, 
pulse-field gel electrophoresis (PFGE) is currently the pre-
ferred method for typing bacterial isolates and is widely 
used in outbreak investigations and source tracking. PFGE 
has been the backbone of the success of CDC’s PulseNet 
program since 1997 (3,4). However, the PulseNet program is 
aiming to replace PFGE with WGS by 2018. This trajectory 
resembles the path taken in the study of human genetics, in 
which genetic mapping based on restriction fragment length 
polymorphism was replaced by quasi-complete information 
obtained by high-throughput genomic sequencing. Although 
restriction fragment length polymorphism markers initially 
enabled the measurement of genetic distance and laid the 
foundation for linkage mapping, its success depended on 
pronounced phenotypic effects of the underlying trait and 
regularly dispersed markers. Once linkage to a region was 
identified, causality could be pinpointed through fine map-
ping. WGS provided not only a complete marker-map with 
maximum resolution at the nucleotide level but also enabled 
the deduction of causality and direct testing of genetic relat-
edness and genetic origination. The promise of this approach 
also extended to the study of pathogens, given that WGS 
ultimately enables testing of specific hypotheses regarding 
genotype-phenotype relationships (e.g., antimicrobial drug 
resistance). However, although more PHLs are adopting 
NGS and WGS, only a small number of these laboratories 
have the ability to perform the bioinformatic analyses needed 
to take full advantage of the data they are generating. CDC 
aids PHLs in conducting foodborne disease surveillance on 
a national scale but is unable to assist with data analysis for 
local foodborne disease surveillance.

Some of the obstacles preventing PHLs from imple-
menting the bioinformatic-dependent analysis are the re-
quirements for large-scale computational capabilities, 
complex molecular evolutionary analyses, and dedicated 
bioinformatics staff to perform these analyses. However, 
all that is really needed is a computer with a browser and 
a connection to the Internet. Web-based tools are available 
for PHLs that are looking to participate in WGS data analy-
sis but are not ready to perform analyses in-house. Several 
of these tools are open-source (i.e., free of charge) and can 
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be used to perform a range of bioinformatics analyses. Two 
of these tools are Illumina’s BaseSpace Sequence Hub (Il-
lumina, Inc., San Diego, CA, USA) and the Galaxy web-
based platform (5). 

Because many PHLs are already using Illumina’s 
MiSeq sequencing platform, BaseSpace is a convenient so-
lution that enables users to monitor the progress of sequenc-
ing runs, share data easily with others, and use 1 terabyte 
(TB) of data storage free of charge. Illumina provides new 
users with a 30-day free trial of BaseSpace, enabling users 
to use all of the wide-ranging bioinformatic tools available. 

The Galaxy platform enables users to perform analy-
ses ranging from sequence quality control and timing to 
whole-genome assemblies (5). Galaxy also enables users to 
track the details of each step of an analysis, making it easier 
to reproduce and publish the results. Galaxy enables non-
experts to perform advanced and computationally intensive 
analyses without having training in bioinformatics. 

However, neither BaseSpace nor Galaxy is without 
drawbacks. Uploading or downloading the large files gener-
ated by NGS can be slow and might fail before finishing, re-
quiring the entire upload or download process to be restarted. 
Web-based tools can also be “black boxes” where users may 
not know exactly what each step of the analysis is, why that 
step is being performed, or why results might be difficult to 
understand or interpret. These web-based tools might seem 
quick and easy to use but often do not perform as expected.

Bioinformatic analyses are often performed in a step-
wise manner, with the output of 1 analysis being used as the 
input for the next. These multistep, multisoftware analyses 
are frequently referred to as pipelines and are often set up to 
run automatically from 1 step to the next without input from 
the user. In this perspective, we describe the bioinformatic 
pipeline implemented at the Utah Public Health Laboratory 
(UPHL) to analyze the WGS data. Sharing our experiences 
with this pipeline will enable PHLs to implement their own 
pipelines by following each step in our pipeline or by us-
ing our pipeline as a template to construct their own unique 
processes. All the software used in our bioinformatics pipe-
line are open-source and are available free of charge (online 
Technical Appendix Table 1, https://wwwnc.cdc.gov/EID/
article/23/9/17-0416-Techapp1.xlsx). We present these 

analyses as a function of the level of technology required, 
spanning everything from basic quality control performed 
on typical desktop or laptop computer to complex molecular 
evolutionary analyses that require powerful high-end Linux 
servers or workstations.

Bioinformatic Pipeline
The bioinformatic pipeline developed and implemented at 
UPHL consists of 8 steps (Figure): 1) read quality control, 
2) reference strain determination, 3) read mapping to the 
reference strain, 4) single-nucleotide polymorphism (SNP) 
and small insertion or deletion (indel) detection, 5) de novo 
genome assembly, 6) genome annotation, 7) phylogenetic 
tree construction, and 8) phylogenetic analysis. Although 
such processes are standard, several software solutions are 
available for the respective steps.

The first step in almost all WGS bioinformatics analy-
ses is quality control of the raw sequencing data. It is im-
portant to remove poor-quality sequence data and techni-
cal sequences (i.e., adapter sequences). Highly accurate 
sequences are required for SNP detection, enabling the 
detection of actual SNPs and distinguishing from sequenc-
ing artifacts. Quality control in our pipeline is performed 
by using Trimmomatic (6), a multithreaded command line 
tool that removes adapter sequences, trims low-quality se-
quence from the beginning or end of a sequence, removes 
reads that fall below a user-defined threshold for length, 
and validates paired-end sequence reads.

The second step in the pipeline is reference sequence 
determination. To determine SNPs, a reference sequence 
is needed against which to compare sequencing reads. The 
choice of reference sequence might have a substantial effect 
on the number and type of SNPs that are detected, making 
this step important. We use Mash for reference sequence 
determination (7). Mash enables us to quickly compare the 
large set of sequencing reads generated against the refer-
ence set of 54,118 National Center for Biotechnology In-
formation RefSeq genomes (https://www.ncbi.nlm.nih.gov/
refseq) to determine nucleotide distance and relatedness (8).

Once a reference sequence is determined, the next step 
in the analysis pipeline is mapping the quality-controlled 
sequencing reads to the reference genome. We perform 
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Figure. Steps in the bioinformatics pipeline implemented at Utah Public Health Laboratory.
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read mapping by using the Burrows-Wheeler Aligner 
(BWA) software package with the bwa-mem option (9). 
BWA uses a Burrow-Wheeler Transform to efficiently 
align sequencing reads to reference genomes allowing for 
gaps and mismatches. The output of BWA is the standard 
sequence alignment map format known as SAM, which fa-
cilitates the next step in the pipeline.

The fourth step in the pipeline uses mapping of the se-
quencing reads to the reference sequence to identify SNPs 
and indels. We perform SNP and indel determination by 
using SAMtools and VarScan2, which also calculate SNP 
frequency in the sequence data (10,11). The output of 
VarScan2 can be easily viewed in the Integrative Genom-
ics Viewer, which enables the interactive viewing of large 
genomic datasets (12). The output file of VarScan2 can 
also be used in more complex downstream analyses (i.e., to 
build SNP matrixes and phylogenetic trees).

The quality-controlled sequencing reads are then used 
for de novo genome assembly in the sixth step of the pipe-
line. We perform de novo genome assembly on individual 
isolates by using the St. Petersburg genome assembler, also 
known as SPAdes (13,14). The SPAdes assembler has 3 
modules: sequencing read error correction; SPAdes as-
sembly; and a mismatch corrector module. The first mod-
ule error corrects the quality-controlled sequencing reads 
by using advanced algorithms based on Hamming graphs 
and Bayesian subclustering. Sequencing error correction 
in this manner has shown to dramatically improve genome 
assemblies of NGS data (15). The SPAdes assembly mod-
ule uses the error-corrected reads and performs the actual 
assembly in an iterative manner making use of de Bruijn 
graphs. The resulting genome assembly is then used as in-
put for the third module, which greatly reduces the number 
of mismatches and small indels by using BWA and results 
in highly accurate contigs (contiguous sequence data made 
up of overlapping sequencing reads) and scaffolds (ordered 
and oriented contigs based on paired-end read data).

We then annotate the resulting genome assembly to iden-
tify protein-coding genes, tRNAs, and rRNAs. We use Prokka 
for annotation of protein-coding genes, tRNA, and rRNA on 
the contigs and scaffolds generated by SPAdes (16). Prokka 
can fully annotate a bacterial genome in approximately 10 
minutes on a high-end quad-core desktop computer by mak-
ing use of a suite of existing software, tools, and sequence da-
tabases, such as UniProt (17) and NCBI RefSeq (8).

We then use shared orthologous genes to construct 
phylogenetic trees that provide insight into the relatedness 
of isolates. Once multiple genomes have been annotated, 
we calculate the pan genome of the combined genomes by 
using Roary (18). The pan genome consists of the union of 
genes shared by genomes of interest, and Roary can com-
pute the pan genome of 1,000 bacterial genomes on a single 
CPU computer in 4.5 hours (19). In addition to determining  

the pan genome of the genomes of interest, Roary also 
generates a concatenated nucleotide alignment of the pan 
genome, which can be used to build a phylogenetic tree of 
these sequences. This pan genome alignment is used as the 
input to RAxML for phylogenetic tree construction (20). 
RAxML is a program that has been designed and optimized 
for conducting phylogenetic analyses on large datasets by 
using maximum-likelihood techniques to estimate evolu-
tionary trees from nucleic acid sequence data (21).

The last step in the pipeline is phylogenetic analyses. 
These analyses can detect a signature of selection on indi-
vidual genes and provide knowledge about the evolutionary 
forces acting on the genes of the sequenced isolates. The pan 
genome alignment can also be used to detect signatures of 
selection by calculating the ratio of the number of nonsyn-
onymous substitutions per nonsynonymous site to the num-
ber of synonymous substitutions per synonymous site. The 
value of this ratio is used to infer the direction and magni-
tude of natural selection, with values >1 implying positive 
selection (i.e., driving change), values <1 implying purifying 
selection (i.e., acting against change), and values of exactly 
1 indicating neutral selection (i.e., no selection). To deter-
mine the ratios for detecting signatures of selection, we use 
the YN00 model (22) implemented in the PAML software 
package (23). The PAML results are a plain text file that can 
be viewed in any word processor or imported into statistical 
analysis software, such as R, for further analysis or plotting.

Laptop or Desktop Hardware
The bioinformatic pipeline we describe can be partitioned 
as a function of computer resources (i.e., the number of 
CPUs, the amount of RAM, and the amount of storage 
space). Typical laptop or desktop computers might only 
have enough power to perform the first steps in the pipeline, 
whereas a high-end workstation would have enough power 
to perform all the steps for hundreds of samples at once. In 
many cases, the limiting factor is how much RAM a com-
puter has. Many of the more complex steps in the pipeline 
require large amounts of RAM, often more than what many 
laptops and desktops can hold. All the software described 
can easily be installed and run on a typical desktop or lap-
top computer (Figure). At UPHL, we performed steps 1–4 
of the described analyses on bacterial isolates by using an 
Apple MacBook Pro laptop (Apple, Inc., Cupertino, CA, 
USA) with a single 3.2-GHz Intel Core i5 processor, 16 gi-
gabytes (GB) of RAM, and 500 GB of storage space (online 
Technical Appendix Table 2). Many PHLs might already 
have the computational resources needed to perform these 
bioinformatic analyses on a small number of samples in 
a reasonable amount of time. However, some basic com-
mand-line instructions would be needed to execute soft-
ware. Numerous online resources, many of them free, will 
help novices learn the basics of the command-line interface.  
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One such resource is the Biostar Handbook (https://www.
biostarhandbook.com). This online document and e-book 
is an excellent resource that introduces bioinformatics and 
covers all of the major areas of focus in bioinformatics, in-
cluding a crash course in the command-line interface.

High-end Desktop Hardware
Computers with an increased number of processing cores, 
more RAM, and more storage space than the typical desk-
top or laptop computer will allow PHLs to perform all the 
analyses described here as well as more advanced and com-
putationally intensive analyses (Figure). High-end desk-
tops are relatively inexpensive to purchase, and it might 
be possible to upgrade desktops a PHL already has. All 
the analyses we describe here were performed at UPHL on 
an Apple iMac equipped with a single 3.2-GHz Intel Core 
i5 processor, 32 GB of RAM, and 2 TB of storage space 
(online Technical Appendix Table 2). For 10 isolates, the 
analyses took ≈5 days to complete. Theoretically, the num-
ber of isolates that could be analyzed can be increased to 
up to hundreds of isolates on a similar high-end desktop 
computer; however, the amount of time to perform these 
analyses would also increase substantially.

Beyond High-end Desktop Hardware
With a high-end Linux-based workstation (http://www.
linux.org) and a network-attached storage array, several 
hundred genomes can be analyzed in a reasonable timeframe 
(Figure). At UPHL, we invested in a high-end Hewlett-
Packard workstation (HP, Inc., Palo Alto, CA, USA) with 
four 3.0-GHz Intel Xeon processors (Intel Corp., Santa 
Clara, CA, USA), each 3.0 GHz with 12 processing cores; 
256 GB of RAM; and a Synology network-attached storage 
array (Synology, Inc., Taipei, Taiwan) with 24 TB of storage 
(online Technical Appendix Table 2). With such a system 
and bioinformatics personnel in place, hundreds of genomes 
can be generated and analyzed in 2–3 days, providing near 
real-time results for disease outbreak surveillance and moni-
toring. In addition to high-end computer hardware, experi-
enced personnel are needed to deploy, maintain, curate, and 
automate bioinformatics pipelines (i.e., bioinformaticians). 
To take full advantage of computational resources, programs 
should be automated and linked together so that as data are 
generated by the sequencer, they are automatically added to 
the bioinformatics pipelines.

Discussion
With NGS becoming more and more important for public 
health laboratories, the need for bioinformatic analyses in 
greatly increasing. Unfortunately, the pace of WGS implemen-
tation is far outpacing the number of bioinformaticians being 
hired to work in PHLs and, understandably, not all PHLs will 
have the need, desire, or financial capacity to hire a full-time  

bioinformatician. The objective of this perspective is to show 
that bioinformatic analyses can be performed on everything 
from a simple laptop to a high-end Linux workstation and 
the user can have little to no experience in bioinformatics 
or can be a full-fledged bioinformatician. As the volume of 
sequencing data increases, the ability to connect phenotype 
to genotype becomes a reality. Knowing a priori that a mi-
croorganism is likely to be resistant to antimicrobial drugs 
or could be a highly virulent strain would greatly improve 
patient outcomes, improve outbreak surveillance, and help 
prioritize resources to combat outbreaks. By using molecular 
evolutionary analyses, PHLs can investigate the evolution of 
antimicrobial-resistance genes to track in near real-time mu-
tations that are linked to newly acquired resistance genes or 
novel mutations that result in resistance. 

NGS has the potential to revolutionize public health. 
NGS is not only replacing PFGE, but has the potential to 
replace traditional culture-based testing as well. Culture-
independent diagnostic testing though metagenomic se-
quencing and analysis has the ability to quickly identify 
pathogens without applying any type of selection.
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