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Changing Geographic Patterns and Risk 
Factors for Avian Influenza A(H7N9)  

Infections in Humans, China 

Technical Appendix 

Live Poultry Markets  

We compiled a database recording the locations of live-poultry markets (LPMs) and 

types of market closure measures implemented since the first wave, with start and end dates. The 

database was initially described elsewhere (1) and assembled by combining data from the official 

website of the Ministry of Agriculture of China and agricultural bureaus at the province and 

prefecture levels, a database of points of interest from the official gazetteer issued by the 

National Administration of Surveying, Mapping, and Geoinformation, and several unpublished 

sources obtained through data mining, Internet searches, and direct contacts with provincial 

agricultural bureaus. Our database recorded the type, starting date, end date, and location of 

market closure measures that were implemented since the first wave. A total of 38 types of 

measures over different time periods were implemented in response to the H7N9 human 

infections and the market closures were implemented at the county or district level. We 

reclassified the 38 types of measures into 4 categories according to the closure measures, as 

follows (cleaning and disinfections measures were not analyzed): LPMs that were permanently 

closed (permanent); LPMs that were closed for 1 or 2 days with a recursive repetition of the 

closing, for which the period between measures could be a week or a month (recursive); LPMs 

that were temporarily closed for a short period, ranging from 1 day to 1 week (short period); and 

LPMs that were temporarily closed for a duration ranging between 1 week and the full duration 

of the epidemic (long period). A count of closing measures along the epidemic waves is 

presented in Technical Appendix Table 1. Only data on permanent market closures were used to 

update a yearly distribution of LPM locations used in this study, ranging from 1 to 32 permanent 

closures per epidemic waves. 

http://dx.doi.org/10.3201/eid2401.171393
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Boosted Regression Tree Models 

The analyses involved the development of Poisson boosted regression tree (BRT) model 

were discussed previously (2,3). Poisson regression allows for predicting a variable with a count 

response, such as the number of human cases per county. Poisson models handle exposure 

variables (offset terms) by using simple algebra to change the dependent variable from a rate 

(count/exposure) into a count. BRTs are machine learning methods and combine 2 algorithms: 

regression trees and boosting. They belong to the family of species distribution models because 

they can deal with abundance and absence/presence data. BRT models generate a large number 

of regression trees, fitted in a stepwise manner, for optimizing the predictive probability of 

occurrence based on predictor variable values. A possible disadvantage to BRT is that it does not 

have the facility to assess the statistical significance of individual effect variables; for this 

reason, the analysis was repeated with classical generalized linear models. However, BRT 

models have been shown to produce accurate predictions of the distribution of avian influenza 

diseases (1,4,5) and are capable of fitting models that account for nonlinear effects, and for 

interactions between predictor variables. They also ensure that the effects of extreme outliers and 

the inclusion of irrelevant predictors are not a source of bias for model predictions (6). We 

developed each epidemic wave model using a 4-fold cross-validation procedure (3) as a key step 

to control and limit model overfitting, which is frequently associated with machine learning 

methods. Finally, the analysis was bootstrapped initially with 30 independent BRT runs for a 

total of 120 cross-validations (30 runs, 4-fold) per wave to account for variations in data splitting 

for the cross-validation. The choice of n = 30 resulted from a trade-off between processing time 

and the convergence of the mean, controlled after the initial runs with the standard deviation of 

the model metrics. BRT models were run with the following parameters: a tree complexity of 2, 

an initial number of trees set at 200, a learning rate of 0.003, and a step size of 50 trees. 

We converted the predicted incidence rate into a probability of having at least 1 human 

case in the county by using a Binomial distribution, as follows: P(X > 0) = 1 – (1 – p)nd where nd 

is the population multiplied by the length of the epidemic in days and p is the incidence rate 

predicted by the Poisson BRT model 
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Additional Analysis 

To check whether the distribution of human cases of the H7N9 virus in China is 

influenced by environmental factors, we formulated Poisson generalized linear models (GLMs) 

to explain the daily incidence rate (DIR) compared with human population density, LPM density, 

poultry density, chicken-to-duck ratio, distance to water, and the proportion of water in the 

county. One GLM per epidemic wave was fitted to be able to compare the effect of predictor 

variables between waves. The presence of spatial autocorrelation in the GLMs residuals was 

tested and taken into account using the same approach adopted for BRT models. The procedure 

is described in the main text of this article. For all analysis of variance, the effect of the predictor 

variables were tested and computed using a type I sum of squares procedure. In that procedure, 

the variance explained by the predictor variables is tested sequentially, so the predictor variables 

must be ordered thoughtfully. The confounding variables were added first in the models: the 

autoregressive terms to catch fully the spatial structures, followed by the human density variables 

for some surveillance and reporting biases. Then, the remaining predictor variables were 

incorporated in GLMs following the order of appearance and importance of these variables in the 

introduction. The assessment of the GLM goodness of fit is presented in Technical Appendix 

Table 2 and the analysis of variance tables to test the effect of predictor variables is given in 

Technical Appendix Table 3. Some of the GLM Poisson models are overdispersed with 

dispersion parameters exceeding 1 (1.37 for the epidemic wave 5; see Technical Appendix Table 

2). Thus, the effects of predictor variables were computed under Poisson distribution hypotheses 

and quasi-Poisson distribution. 
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Technical Appendix Table 1. Number of live poultry market closure measures following waves of influenza A(H7N9), China 

Type of closure Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Permanent 32 27 13 17 1 
Recursive 92 59 76 18 229 
Short 7 139 14 24 243 
Long 137 102 163 46 326 

 
 
Technical Appendix Table 2. Goodness of fit metrics of the GLMs across the different epidemic waves of influenza A(H7N9), 
China* 

Wave 

Pearson correlation coefficient AUC Dispersion parameter 
(quasi-Poisson) Training Training (auto) Training Training (auto) 

Wave 1 0.487 0.504 0.899 0.903 0.912 
Wave 2 0.413 0.396 0.813 0.813 1.192 
Wave 3 0.426 0.411 0.804 0.802 1.221 
Wave 4 0.206 0.205 0.834 0.835 0.723 
Wave 5 0.360 0.365 0.747 0.746 1.335 
*AUC, area under the curve; GLM, generalized linear model 

 
 
 
Technical Appendix Table 3. Analysis of deviance table of generalized linear models for 5 waves of influenza A(H7N9) infections, 
China* 

Wave Coefficient Df 
Residual 
deviance 

Explained 
deviance 

p-value 
Poisson 

p-value quasi-
Poisson 

% of deviance 
explained 

Wave 1        
NULL NA NA 790.470 NA NA NA NA 
Autoregressive 
term 

0.088 1 648.710 141.760 <0.001 <0.001 NA 

Human population 
density 

0.451 1 541.629 107.081 <0.001 <0.001 48.041 

LPM density 0.293 1 447.000 94.629 <0.001 <0.001 42.455 
Poultry density 0.338 1 442.877 4.124 0.042 0.033 1.85 
Chicken-to-duck 
ratio 

0.044 1 440.735 2.142 0.143 0.125 0.961 

Proportion of 
wetland 

0.033 1 440.062 0.672 0.412 0.391 0.302 

Distance to water 0.702 1 425.816 14.246 <0.001 <0.001 6.391 

Wave 2        
NULL NA NA 1384.268 NA NA NA NA 
Autoregressive 
term 

0.080 1 1130.313 253.956 <0.001 <0.001 NA 

Human population 
density 

0.291 1 1045.046 85.267 <0.001 <0.001 46.537 

LPM density 0.148 1 1017.617 27.428 <0.001 <0.001 14.97 
Poultry density 0.289 1 1010.821 6.796 0.009 0.017 3.709 
Chicken-to-duck 
ratio 

0.137 1 1004.635 6.186 0.013 0.023 3.376 

http://dx.doi.org/10.1371/journal.ppat.1001308
http://dx.doi.org/10.7554/eLife.19571
http://dx.doi.org/10.1002/sim.1501


 

Page 5 of 6 

Wave Coefficient Df 
Residual 
deviance 

Explained 
deviance 

p-value 
Poisson 

p-value quasi-
Poisson 

% of deviance 
explained 

Proportion of 
wetland 

0.166 1 965.868 38.767 <0.001 <0.001 21.158 

Distance to water 0.368 1 947.087 18.781 <0.001 <0.001 10.25 

Wave 3        
NULL NA NA 992.823 NA NA NA NA 
Autoregressive 
Term 

0.121 1 867.395 125.428 <0.001 <0.001 NA 

Human population 
density 

0.757 1 764.591 102.803 <0.001 <0.001 76.172 

LPM density 0.114 1 757.073 7.519 0.006 0.013 5.571 
Poultry density 0.081 1 757.052 0.021 0.884 0.895 0.016 
Chicken-to-duck 
ratio 

0.101 1 756.313 0.738 0.390 0.437 0.547 

Proportion of 
wetland 

0.065 1 752.081 4.232 0.040 0.063 3.136 

Distance to water 0.430 1 732.432 19.649 <0.001 <0.001 14.559 

Wave 4        
NULL NA NA 657.843 NA NA NA NA 
Autoregressive 
Term 

0.113 1 564.970 92.872 <0.001 <0.001 NA 

Human population 
density 

0.447 1 529.735 35.235 <0.001 <0.001 51.694 

LPM density 0.119 1 518.771 10.964 0.001 <0.001 16.086 
Poultry density 0.133 1 517.896 0.875 0.350 0.271 1.283 
Chicken-to-duck 
ratio 

0.199 1 497.660 20.236 <0.001 <0.001 29.689 

Proportion of 
wetland 

0.057 1 496.837 0.823 0.364 0.286 1.208 

Distance to water 0.022 1 496.810 0.027 0.871 0.848 0.039 

Wave 5        
NULL NA NA 2364.321 NA NA NA NA 
Autoregressive 
Term 

0.106 1 1983.576 380.744 <0.001 <0.001 NA 

Human population 
density 

0.044 1 1951.345 32.231 <0.001 <0.001 38.707 

LPM density 0.039 1 1943.637 7.708 0.005 0.016 9.257 
Poultry density 0.229 1 1926.609 17.028 <0.001 <0.001 20.449 
Chicken-to-duck 
ratio 

0.107 1 1903.768 22.841 <0.001 <0.001 27.43 

Proportion of 
wetland 

0.025 1 1902.765 1.003 0.317 0.386 1.205 

Distance to water 0.079 1 1900.307 2.457 0.117 0.175 2.951 

*Df, degrees of freedom ; LPM, live poultry market; NA, not applicable. 
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Technical Appendix Figure. Marginal effect plots of the “human density” and “proportion of wetlands” 

predictor variables on the predicted incidence rate, with the change in relative contribution over time 

indicated by the bars on the top of each plot, showing the increasing relative contribution of the poultry 

predictor variables. The smoothed line on the top left part of each plot is indicative of the distribution of 

each variable. 


