
Human pegivirus (HPgV), previously called hepatitis G vi-
rus or GB virus C, is a lymphotropic virus with undefined 
pathology. Because many viruses from the family Flaviviri-
dae, to which HPgV belongs, are neurotropic, we studied 
whether HPgV could infect the central nervous system. 
We tested serum and cerebrospinal fluid samples from 96 
patients with a diagnosis of encephalitis for a variety of 
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pathogens by molecular methods and serology; we also 
tested for autoantibodies against neuronal antigens. We 
found HPgV in serum and cerebrospinal fluid from 3 pa-
tients who had encephalitis of unclear origin; that is, all 
the markers that had been tested were negative. Single-
strand confirmation polymorphism and next-generation 
sequencing analysis revealed differences between the 
serum and cerebrospinal fluid–derived viral sequences, 
which is compatible with the presence of a separate HPgV 
compartment in the central nervous system. It is unclear 
whether HPgV was directly responsible for encephalitis in  
these patients.

Human pegivirus (HPgV) was originally described as a 
hepatitis virus by 2 independent groups of researchers 

and called GB virus C and hepatitis G virus (1,2). Where-
as the infection was found to be common in patients with 
forms of chronic hepatitis, and particularly prevalent in pa-
tients with chronic hepatitis C infection, it is not associated 
with liver injury in the absence of concomitant infection 
with hepatitis C virus (HCV) or hepatitis B virus (HBV). 
Furthermore, the liver is not the primary replication site for 
this virus (3,4). This virus was recently renamed as pegi-
virus and assigned to a new genus (Pegivirus) within the 
family Flaviviridae (5). 

Infection with HPgV is common worldwide; ≈5% 
of healthy blood donors in industrialized countries are  
viremic, whereas in some developing countries the preva-
lence of viremia among blood donors is ≈20% (6). There 
is evidence that HPgV is transmitted parenterally, sexu-
ally, and also vertically from mother to child (7). How-
ever, the high proportion of HPgV infection in apparently 
healthy blood donors and the general population suggests 
existence of nonparenteral routes. The reasons for the 
high prevalence of infection in developing countries are 
not entirely clear but could be related to overall poor hy-
gienic conditions, as well as to the time of exposure. In 
sub-Saharan Africa, where HPgV is particularly common, 
this virus is transmitted mainly during childhood, which 
may facilitate the establishment of chronic infection (7). 
Because no association between HPgV and disease has 
been consistently identified, blood donors are not routine-
ly screened for the virus.

Interest in the HPgV infection was revived when 
several studies identified its beneficial effect on the sur-
vival of HIV-infected persons (8,9); anti-HIV replica-
tion effects of HPgV were confirmed in vitro (8). Several 
in vivo and in vitro studies suggest that HPgV may di-
rectly interfere with HIV replication and affect host cell 
factors necessary for the HIV life cycle; specific mecha-
nisms include modulation of cytokine and chemokine 
release and receptor expressions and lowering of T-cell 
activation and proliferation (9). However, infection with 

HPgV may not be totally benign; some studies found an 
association between infection and non-Hodgkin lym-
phoma (10,11), which could be the result of lowered im-
mune activation.

Many viruses from the family Flaviviridae, most 
prominently arthropodborne viruses (arboviruses) such 
as West Nile virus (WNV) and tick-borne encephalitis 
virus (TBEV), are neurotropic and a prominent cause of 
encephalitis in Europe and North America (12). These fac-
tors raise the question whether HPgV could be neurotropic 
and whether it could be an etiologic agent in neuroinfec-
tions. Of note, despite substantial progress in diagnostics, 
the etiology of encephalitis remains unclear in 40%–80% 
of patients (13,14). A plethora of pathogens may cause 
encephalitis; many of these pathogens are rare and thus 
testing is not performed to identify them, and others have 
not yet been identified. 

Three recent case reports described HPgV RNA in 
the human central nervous system (CNS), demonstrat-
ing that the virus can be present in the brain under certain 
circumstances (15–17). In the first study, viral sequences 
were detected postmortem in brain tissue from a patient 
with multiple sclerosis, not encephalitis (15). In the second 
study, the presence of HPgV might have been related to a 
severely compromised blood–brain barrier; the patient was 
HIV-positive and had cerebral toxoplasmosis and fungal 
encephalitis (16). Although the full-length virus was re-
covered from the patient’s brain tissue, it is unclear which 
cells harbored the virus and it was possible that the actual 
source was blood. Furthermore, the association of HPgV 
with multiple sclerosis could not be established because 
the study was limited to a single case. In the third study, 
HPgV was detected in serum and CSF of a patient with a 
severe form of encephalitis of unclear origin (17). Of these 
3 studies, none included comparison of serum- and CNS-
derived virus. We conducted a study of 96 consecutive pa-
tients with diagnosis of encephalitis (18) in Poland during 
2012–2015 to determine whether HPgV could be found in 
the CNS. 

Materials and Methods

Patients and Routine Diagnostics
We prospectively enrolled patients with encephalitis at 
the Warsaw Hospital for Infectious Diseases (Warsaw, 
Poland) from June 2012 through July 2015. The details 
of this study were published previously (18). We defined 
encephalitis as an acute-onset illness with altered mental 
status, decreased level of consciousness, seizures, or fo-
cal neurologic signs, together with >1 abnormality of the 
CSF (leukocyte count >4 cells/mm2 or protein level >40 
mg/dL). We obtained written informed consent from all 
patients or from close relatives of patients unable to give 

1786 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 24, No. 10, October 2018



Pegivirus in Patients with Encephalitis

consent due to their condition. The Internal Review Board 
of the Medical University of Warsaw approved the study.

We collected CSF and serum samples from patients at 
admission (5–7 days after symptom onset) and kept them 
frozen at -80°C until analysis. We tested the samples from 
all 96 patients for the presence of 5′ untranslated region 
(UTR) HPgV RNA. We performed real-time quantitative 
PCR (qPCR) or real-time quantitative reverse transcrip-
tion PCR (qRT-PCR) to detect human herpesvirus (HHV) 
1 and 2, varicella zoster virus (VZV), cytomegalovirus 
(CMV), HHV-6, enteroviruses (coxsackievirus A9, A16, 
B2, B3, B4, B5; echovirus 5, 6, 9, 11, 18, 30; and enterovi-
rus 71), TBEV, WNV, and human adenovirus (HAdV) in 
CSF samples. We used commercial serologic tests to test 
CSF and paired serum samples for HHV-1, HHV-2, VZV, 
TBEV, and WNV as described (18). We detected autoan-
tibodies against neuronal surface antigens using the Au-
toimmune Encephalitis Mosaic 6 assay (Euroimmun AG, 
Luebeck, Germany).

HPgV 5′ UTR and E2 Amplification
We extracted total RNA with TRIzol LS (ThermoFisher 
Scientific, Waltham, MA, USA) from 400 µL of CSF or se-
rum and suspended RNA in 20 µL of water, 5 µL of which 
was subsequently used for each amplification reaction. We 
amplified the HPgV 5′ UTR by nested reverse transcription 
PCR (RT-PCR) as described previously (19), resulting in 
421 bp-length product; we amplified the E2 region follow-
ing the RT-PCR protocol published by Smith et al. (20). 
The final product was 422 bp in length.

Single-Strand Conformation Polymorphism
We subjected the amplified PCR products to single-strand 
conformational polymorphism analysis, as described previ-
ously (21). In brief, we purified HPgV 5′ UTR and HPgV-
E2 PCR products by using the Wizard PCR Preps DNA 
Purification System (Promega, Madison, WI, USA). We 
then subjected the products to thermal denaturation, ran 
them on nondenaturing 1% polyacrylamide gels at 400V 
in 25°C, fixed them with acetic acid, and stained them with 
silver stain.

Next-Generation Sequencing
We reamplified RT-PCR products with primers specifically 
designed for the Illumina MiSeq platform (Illumina, San 
Diego, CA, USA). Each primer contained the following: 
sequences complementary to the adapters on a flow cell; 
an 8-nt index sequence; sequences corresponding to the Il-
lumina sequencing primers; and sequence-specific nested 
primers for the 5′ UTR and E2 region. Amplification of the 
5′ UTR region included initial denaturation at 94°C for 5 
min, 20 cycles of 94°C for 1 min, 58°C for 1 min, 72°C for 
1 min, and final elongation at 72°C for 10 min. HPgV E2 

amplification included denaturation at 94°C for 5 min fol-
lowed by 20 cycles of 94°C for 18 s, 55°C for 20 s, 72°C 
for 90 s, and 1 cycle at 72°C for 10 min. We trimmed the 
libraries by using the LabChip XT apparatus (PerkinElmer, 
Waltham, Massachusetts, USA) with the DNA 300 Assay 
Kit (PerkinElmer); the range of fraction collection was 
370–430 bp for 5′ UTR and 460–530 bp for E2.

We assessed the quality and average length of next-
generation sequencing libraries by using Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA). We equi-
molarily pooled the indexed samples and sequenced them 
on Illumina MiSeq with 301 bp-end reads according to the 
manufacturer’s protocol.

Data Analysis
We trimmed raw reads using cutadapt version 1.2.1  
(https://github.com/marcelm/cutadapt/);  (22), then used 
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/
index.html) for additional processing. We removed all 
Phred quality score reads <20 using FASTQ/A Artifacts 
Filter and preprocessed the remaining reads (grouping, 
counting, and frequency arrangement) using R scripts 
(23). To diminish the contribution of false positive vari-
ants to genetic diversity, we applied the experimentally 
established sequencing error cutoff of 1.22%. Finally, we 
aligned remaining sequences and generated phylogenic 
trees with ClustalX version 2.0 (http://www.clustal.org/
clustal2/) (24). We assessed nucleotide diversity per site 
and the number of substitutions with respect to the domi-
nant serum sequence in each patient using DnaSP version 
6.11.06 (25). We predicted the RNA secondary structures 
of the 5′ UTR using Mfold version 3.2 (http://unafold.
rna.albany.edu/?q=mfold) (26), and searched for putative 
B cell epitopes within the E2 region using BepiPred-2.0 
(http://www.cbs.dtu.dk/services/BepiPred/) (27).

Results
Four patients were positive for 5′ UTR HPgV RNA in se-
rum, and 3 of these patients were also positive in CSF. We 
analyzed the samples from those 3 patients; their samples 
were collected at admission, which was 5–7 days after 
symptom onset. We diagnosed encephalitis of unclear 
origin for all 3 patients because they were negative for all 
the pathogens tested (Table 1). The small number of HP-
gV-infected patients did not allow for statistical analysis, 
but these patients were not strikingly different from other 
encephalitis patients. We initially suspected 1 patient, 
who had a severe illness with prolonged hospitalization, 
of having HHV infection, but tests did not confirm HHV. 
All 3 patients recovered without any neurologic sequelae.

We compared serum- and CSF-derived 5′ UTR and 
E2 amplicons from the 3 patients by single-strand confor-
mational polymorphism analysis (Figure 1). Because this  
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analysis suggested the presence of differences between the 
serum- and CSF-derived viral sequences in individual pa-
tients, we subjected all amplicons to next-generation se-
quencing. After filtering, the mean number of reads per sam-
ple was 70,759 (range 2,706–183,046) (Table 2).

When we compared 5′ UTR and E2 sequences phy-
logenetically, we found that serum- and CSF-derived 
sequences clustered together in individual patients; no 
sequence was found in multiple patients (Figure 2). 
Of note, we found several variants to be unique in the 
CSF compartment. These sequences comprised 2.28%–
29.32% of all variants for 5′ UTR and 0%–41.78% of all 
variants for E2 (Table 2; Figure 3). Unique CSF-derived 
sequences were also present when we analyzed the E2 
region on the amino acid level (Figure 4). The changes 
were serine to phenylalanine at aa position 508 in patient 
2 and proline to leucine at position 572 in patient 3. Both 
changes were within the predicted B cell epitopes (aa 
506–522 and 559–572).

We analyzed all 5′ UTR sequence variants to deter-
mine the predicted stability of their secondary RNA struc-
ture. We deemed the effect of variations minor because 
most were localized in the nonbasepaired parts (data not 
shown), and free energies of the hypothetical secondary 
structures were only occasionally and mildly affected (on-
line Technical Appendix Figure, https://wwwnc.cdc.gov/
EID/article/24/10/18-0161-Techapp1.pdf) (28).

Discussion
We detected HPgV sequences in CSF from 3/96 patients 
with encephalitis. We classified all 3 cases as encephalitis 
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Figure 1. Single-strand conformation polymorphism analysis of 
5′ UTR and E2 region human pegivirus amplicons from 3 patients 
with encephalitis of unclear origin, Poland, 2012–2015. CSF, 
cerebrospinal fluid; S, serum; UTR, untranslated region.

 
Table 1. Comparison of clinical characteristics of 3 encephalitis patients infected with human pegivirus compared with patients with 
other forms of encephalitis, Poland, 2012–2015* 

Characteristic 

Encephalitis patients infected  
with pegivirus 

 

Other encephalitis patients 
Infectious cause 

identified, n = 41† 
Unknown cause or 

autoimmune illness, n = 52‡ Patient 1 Patient 2 Patient 3 
Male sex  No No Yes  30 (73) 23 (44) 
Median age, y (range) 55 28 20  38 (19–85) 38 (20–82) 
Pharmacological immunosuppression 
present 

0 0 0  2 (5) 3 (6) 

HIV positive 0 0 0  0 2 (4) 
Cancer 0 0 0  6 (15) 1 (2) 
Median length of hospital stay, d (range) 41 30 8  12 (5–97) 11.5 (6–79) 
Fever >38°C Yes Yes No  26 (63) 18 (35) 
Headache Yes Yes No  22 (54) 25 (48) 
Altered mental status Yes Yes No  36 (88) 47 (85) 
Focal neurologic signs No No Yes  9 (22) 10 (20) 
Seizures No No Yes  12 (29) 16 (31) 
Stiff neck No No No  7 (17) 12 (23) 
CSF analysis 
 Median leukocyte count, cells/mm2 (range) 3 4 3  41 (1–1225) 18 (1–362) 
 Median protein level, g/L (range) 0.68 0.26 1.63  0.57 (0.16–3.21) 0.56 (0.11–3.33) 
Death 0 0 0  1 (2.4) 0 
*Values are no. (%) unless otherwise indicated. CSF, cerebrospinal fluid 
†Identified infections were human herpesvirus 1 (n = 22), enterovirus (n = 6), varicella zoster virus (n = 5), tick-borne encephalitis virus (n = 6), and 
cytomegalovirus (n = 2). 
‡All markers of viral infection were negative, but 5 patients had antibodies against N-methyl-D-aspartate receptor and a diagnosis of autoimmune 
encephalitis. 
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of unknown origin because they were negative for sero-
logic and molecular markers of common CNS pathogens. 
Furthermore, we demonstrated that these viral sequences 
differed from those circulating in serum. The presence 
of viral RNA in CSF could be due to a compromised 
blood–brain barrier, which was possible in these patients 
with encephalitis. However, the presence of differences in  

circulating and CSF-derived sequences is more compatible 
with the existence of separate viral compartments and thus 
independent replication. Similar compartmentalization in 
which distinct blood and CNS viral populations indicate 
separately evolving populations has been described for oth-
er viruses, most prominently for HIV (29) but also for HCV 
(30,31) and human BK polyomavirus (32). 
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Table 2. 5 Human pegivirus variants in serum and cerebrospinal fluid in 3 patients with encephalitis of unknown origin, Poland,  
2012–2015* 

RNA region 
Patient 1 

 
Patient 2 

 
Patient 3 

Serum CSF Serum CSF Serum CSF 
5 untranslated region   
 No. reads before error cutoff 124,987 110,331  108,002 183,046  101,240 145,411 
 No. reads after error cutoff 61,783 57,668  49,075 109,061  55,328 75,998 
 No. nucleotide variants† 3 7  3 3  2 3 
 No. unique nucleotide variants in CSF† – 5 (29.32)  – 1 (2.28)  – 1 (2.49) 
 No. nucleotide substitutions 2 7  2 2  1 2 
 Nucleotide diversity per site 0.004 0.007  0.004 0.004  0.003 0.004 
E2 region   
 No. reads before error cutoff 70,460 38,025  77,656 76,918  2,706 82,738 
 No. reads after error cutoff 26,720 20,619  26,558 42,609  453 34,887 
 No. nucleotide variants† 8 4  8 9  4 7 
 No. unique nucleotide variants in CSF† – 0  – 5 (41.78)  – 3 (27.28) 
 No. nucleotide substitutions 4 2  5 5  2 3 
 Nucleotide diversity per site 0.007 0.004  0.006 0.007  0.004 0.005 
 No. amino acid variants† 2 2  2 5  2 4 
 No. unique amino acid variants in CSF† – 0  – 3 (27.28)  – 2 (27.28) 
*Numbers in parentheses are percentages. CSF, cerebrospinal fluid 
†After applying the 1.22% sequencing error cutoff. 

 

Figure 2. Phylogenetic 
analysis of A) 5′ UTR and 
B) E2 region sequences 
of human pegivirus from 3 
patients with encephalitis 
of unclear origin, Poland, 
2012–2015. Phylogenic trees 
were generated using ClustalX 
version 2.0 (http://www.clustal.
org/clustal2/). Viral variant 
frequencies follow haplotype 
number. Red indicates 
patient 1; blue, patient 2; 
green, patient 3. Scale bars 
indicate number of nucleotide 
substitutions per site. C, 
cerebrospinal fluid; S, serum; 
UTR, untranslated region. 
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Figure 3. Comparison of 
E2 region human pegivirus 
sequences amplified from serum 
and cerebrospinal fluid from 
3 patients with encephalitis of 
unclear origin, Poland, 2012–
2015. Numbers in parentheses 
represent the number of reads 
representing a given sequence. 
Shading indicates sequences 
unique to cerebrospinal fluid. 
Nucleotide numbering follows 
the reference strain published 
by Linnen et al (2) (GenBank 
accession no. NC_001710.1).  
C, cerebrospinal fluid; S, serum.
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It is unclear how HPgV could access the CNS. Al-
though initially HPgV was thought to be a hepatotropic 
virus, the viral negative strand, which is the putative rep-
licative intermediate of the virus, was not detected in liv-
er tissue (3); however, it was found in bone marrow and 
spleen (33,34). The virus is now considered lymphotropic 
because it can be detected at a low level in multiple lineages 
of peripheral leukocytes (35,36), and it has been speculated 
that the primary target could be a progenitor hematopoi-
etic stem cell. The route for CNS access could be through 
infected leukocytes; all basic groups (T cells, B cells, mac-
rophage/monocytes, and NK cells) have the ability to enter 
the brain under certain conditions (37). Certain monocyte 
family members are constantly replaced as part of normal 
physiology (38,39), while the entry of T cells and B cells 
depends largely on their activation state (40,41). Such a 
phenomenon related to trafficking of infected leukocytes 
through the blood–brain barrier has been long postulated 
for HIV-1 neuroinfection (42).

Whether HPgV was the causative factor of encephali-
tis in the patients we describe is not clear. Viral pathogens  

are typically present only transiently in CSF and this 
window could be easily missed, particularly when the 
spinal tap is done too late in the course of illness (43). 
If HPgV encephalitis exists, it could be a rare phenom-
enon. In a previous study of 17 encephalitis and aseptic 
meningitis cases of unknown cause, no CSF sample was 
positive (44). However, even infections with well-known 
neurotropic agents from the Flaviviridae family, such as 
WNV or TBEV, are usually subclinical or asymptomatic; 
clinical signs and symptoms develop only in 5%–30% of 
cases (45,46). Of note, in 2 of the cases we describe, the 
encephalitis was mild, and all 3 patients recovered with-
out any neurologic sequelae. Obviously, the mere pres-
ence of a pathogen in the CNS in patients with encephali-
tis does not prove causality; for example, HCV sequences 
are commonly detected in brain and CSF of infected pa-
tients without any accompanying evidence of encephalitis 
(29). In our study, we detected HPgV sequences in CSF 
only in patients without an obvious cause of encephalitis 
and in none of the patients in whom a known pathogen  
was identified.
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Figure 4. Comparison of amino acid composition of E2 region human pegivirus sequence variants amplified from serum and 
cerebrospinal fluid from 3 patients with encephalitis of unclear origin, Poland, 2012–2015. Numbers in parentheses represent the 
number of reads representing a given sequence. Shading indicates sequences unique to cerebrospinal fluid. C, cerebrospinal fluid; 
S, serum.
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The identified 5′ UTR and E2 region sequence dif-
ferences between CSF and serum compartments could 
have biological meaning. The 5′ UTR contains an internal  
ribosomal entry site that allows cap-independent viral 
translation (28). Such structures were identified within the 
5′ UTR of the picornaviruses and were shown to interact 
with cellular proteins, thus affecting the host range of in-
dividual viruses (47). Research has also shown that, for 
HCV, translation efficiencies of brain-derived internal ri-
bosomal entry site variants are generally lower than those 
found in serum, which could be a viral strategy favoring 
latency in the CNS (31). Taking this into consideration, 
we speculated that at least some of the 5′ UTR changes 
in the patients we report represent tissue-specific adjust-
ment. Viral adaptive changes could be relatively small and 
yet make a huge difference; for example, it has been dem-
onstrated for lymphocytic choriomeningitis virus in mice 
that variants differing by a single amino acid substitution 
are competitively selected either by the liver and spleen or 
by neurons (48).

On the amino acid level, we saw 2 unique E2 region 
changes in CSF variants compared with serum: in patient 
2, serine was changed to phenylalanine at aa position 508, 
and in patient 3, proline was changed to leucine at position 
572. Both were within regions predicted to contain B-cell 
epitopes, thus suggesting that they were the effect of im-
mune pressure. Furthermore, the change in patient 3 was 
located in the region of E2 that was experimentally shown 
to contain a strong antigenic site and likely to be involved 
in cell binding or fusion (49).

RNA viruses in particular are characterized by a high 
degree of genetic heterogeneity; probably because the lack 
of proofreading 3′ 5′ exonuclease activity in viral RNA 
polymerases causes low fidelity. As a result, viruses cir-
culate in the infected host as a population of closely re-
lated but nonidentical genomes, referred to as quasispecies 
(50). It is unclear whether the observed high HPgV vari-
ability developed in the patients we describe de novo after 
infection or if most or all variants were transmitted from 
the infecting host; both mechanisms could occur together. 
However, because viral transmission is typically accompa-
nied by narrowing of the quasispecies spectrum (known as 
the bottleneck phenomenon), some extent of postinfection 
evolution is highly likely.

In summary, we detected HPgV sequences in the 
CSF of 3 patients with encephalitis of unclear origin, and 
these sequences from CSF differed from those circulating 
in serum. These findings are compatible with the pres-
ence of a separate viral compartment in the CNS. Deter-
mining if the pegivirus was responsible for encephalitis 
or if it was present along with another cause of encepha-
litis will require further research, including histopatho-
logical analysis.
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