We isolated *Rickettsia japonica* from a febrile patient in Lu’an City, China, in 2013. Subsequently, we found an *R. japonica* seroprevalence of 54.8% (494/902) in the rural population of Anhui Province and an *R. japonica* prevalence in *Haemaphysalis longicornis* ticks of 0.5% (5/935). *R. japonica* and its tick vector exist in China.

These authors contributed equally to this article.
but mainly had dimensions 0.2 μm × 0.5–1 μm (online Technical Appendix Figure 3).

We amplified and sequenced the 17-kDa protein gene, 16S rRNA gene, ompA, ompB, and gene D of *R. japonica* (GenBank accession nos. KY364904, KY484160, KY484162, KY484163, and KY488633; online Technical Appendix Table). These gene sequences were 99.8%–100% homologous with the corresponding gene of an *R. japonica* isolate (GenBank accession no. AP017602.1).

Hard-body tick species *Haemaphysalis longicornis*, *H. flava*, and *Dermacentor tawaniensis* (3,6) have been reported as *R. japonica* transmission vectors. We acquired questing *H. longicornis* ticks in Shandong Province, China, in 2013 and found them positive for the *R. japonica* 17-kDa protein and 16S rRNA genes by PCR (online Technical Appendix). The percentage of *H. longicornis* ticks infected with *R. japonica* rickettsia in Shandong Province was 0.5% (5/975). The *H. longicornis* tick, which is prevalent in East China and feeds on domestic animals and small mammals, might be a major vector of *R. japonica* rickettsia in China (7,8). Phylogenetic analysis of the 16S rRNA (Figure, panel A) and 17-kDa protein (Figure, panel B) genes indicated that the rickettsial isolates from the patient and *H. longicornis* tick were identical to *R. japonica* isolates and in the same clade with *R. heilongjiangensis*.

Examination by indirect immunofluorescence assay showed that the patient’s acute (1:80 dilution) and convalescent (1:1,280 dilution) serum samples reacted to isolated antigen of *R. japonica* bacterium. During 2013, we collected serum samples from 902 healthy persons living in rural areas of Anhui Province (online Technical Appendix Figure 1) and tested them with the same assay. We found 54.8% (494/902) of serum samples positive for *R. japonica*–specific antibodies.

In summary, we detected *R. japonica* bacteria in a patient and an *H. longicornis* tick and demonstrated high *R. japonica* seroprevalence among the rural population of Anhui Province. In agreement with Lu et al.’s work in 2015 (9), our findings suggest that *R. japonica* might be more prevalent in China than previously thought. Physicians in

![Figure](attachment:figure.png)

Figure. Phylogenetic analysis of *Rickettsia* isolate from patient with Japanese spotted fever in Anhui Province and isolate from *Haemaphysalis longicornis* tick in Shandong Province, China, 2013 (black dots), compared with reference isolates. Unrooted neighbor-joining trees of 16S rRNA gene (A) and 17-kDa protein gene (B) were constructed by using MEGA 5.2 (https://www.megasoftware.net/) and 1,000 bootstrap replications. Scale bars represent substitutions per nucleotide.
China need to become aware of R. japonica disease presentation, so they can administer the appropriate treatment to patients with suspected R. japonica infections.

This study was supported by the National Natural Science Foundation of China (81571963); Science Foundation of Anhui Province of China (1608085MH213); Natural Science Foundation Key Project of Anhui Province Education Department (KJ2015A020, KJ2016A331); and Scientific Research of Anhui Medical University (XJ201314, XJ201430, XJ201503).

About the Authors
Dr. Li is a research coordinator at The First Affiliated Hospital of Anhui Medical University, Hefei, China. His research interests are pathogenic mechanisms of tickborne infectious diseases, including severe fever with thrombocytopenia syndrome, human granulocytic anaplasmosis, and spotted fever group rickettsioses. Dr. Wen Hu is an electron microscope technician at The First Affiliated Hospital of the University of Science and Technology of China, Hefei, China. His research interest is pathogen structure.

References

Burkholderia lata Infections from Intrinsically Contaminated Chlorhexidine Mouthwash, Australia, 2016

Lex E.X. Leong, Diana Lagana, Glen P. Carter, Qinning Wang, Kija Smith, Tim P. Stinear, David Shaw, Vitali Sintchenko, Steven L. Wesselingh, Ivan Bastian, Geraint B. Rogers

Author affiliations: South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (L.E.X. Leong, S.L. Wesselingh, G.B. Rogers); Flinders University, Bedford Park, South Australia, Australia (L.E.X. Leong, G.B. Rogers); Royal Adelaide Hospital, Adelaide (D. Lagana, D. Shaw); University of Melbourne, Melbourne, Victoria, Australia (G.P. Carter, T.P. Stinear); The University of Sydney, Westmead, New South Wales, Australia (Q. Wang, V. Sintchenko); SA Pathology, Adelaide (K. Smith, I. Bastian)

DOI: https://doi.org/10.3201/eid2411.171929

Burkholderia lata was isolated from 8 intensive care patients at 2 tertiary hospitals in Australia. Whole-genome sequencing demonstrated that clinical and environmental isolates originated from a batch of contaminated commercial chlorhexidine mouthwash. Genomic analysis identified efflux pump–encoding genes as potential facilitators of bacterial persistence within this biocide.

Burkholderia contaminans and B. lata together form group K of the B. cepacia complex (Bcc). These predominantly environmental species are a major cause of pharmaceutical contamination and have been linked to multiple instances of associated opportunistic infection (1). Although both species are capable of causing serious infections in humans (2,3), only B. contaminans has been associated with infection outbreaks (3,4). We report a healthcare-associated B. lata infection outbreak occurring in intensive care units (ICUs) in 2 tertiary hospitals in Australia.

During May–June 2016, bacterial contamination of chlorhexidine mouthwash (0.2% mg/mL) was associated with an interjurisdictional outbreak in New South Wales and South Australia. Bcc isolates were obtained from blood and tracheal aspirates from 6 ICU patients in hospital A (South Australia) (sample information and isolation protocols detailed in the online Technical Appendix, https://wwwnc.cdc.gov/EID/article/24/11/17-1929-Techapp1.pdf). An investigation by the hospital’s infection and prevention control team noted discoloration of a commercial chlorhexidine mouthwash. Bcc isolates were cultured from...