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Prevalence of Avian Influenza A(H5) and 
A(H9) Viruses in Live Bird Markets, 

Bangladesh 

Technical Appendix 1 

Sample Size Calculations 

The selection of 20 large and 20 small live bird markets (LBMs) was necessary to detect 

a statistically significant difference between 2 groups of LBMs with assumed LBM-level avian 

influenza virus prevalences of 50% and 10%, respectively (95% significance, 80% power). 

Assuming a prevalence of infection of 7% in chickens in a contaminated LBM, detecting the 

infection in chickens traded in a contaminated LBM with a confidence of 95% required the 

sampling of 40 chickens. 

Assuming a prevalence of infection of 7% in chickens and 14% in waterfowls in a 

contaminated LBM, sampling 40 chickens and 20 waterfowls from each LBM was needed to 

detect at least 1 infected chicken and 1 infected duck with a 95% significance. For chicken 

breeds, we aimed to sample 15 broilers, 15 Desi (local in Bengali, indigenous chicken breeds 

raised in backyard farms) and 10 Sonali (cross-breed of the Rhode Island Red cocks and 

Fayoumi hens) in LBMs in which more broilers were sold than Sonali, and 10 broilers, 15 Desi 

and 15 Sonali in in LBMs in which more Sonali were sold than broilers, hypothesizing that their 

numbers were proportional to their relative numbers sold in Dhaka and Chittagong LBMs. For 

waterfowl, we aimed to sample 15 ducks and 5 geese/LBM, or 20 ducks were sampled if geese 

were not present. Assuming that the probability of a pool of 5 environmental samples being 

contaminated in a contaminated LBM was 0.3 (and the probabilities of environmental sites being 

contaminated were independent), it was necessary to collect 10 pools to detect at least 1 

contaminated pool with a probability of 0.97. 

Bayesian Hierarchical Logistic Regression Model 

For a given viral subtype (i.e., H5 or H9), the contamination status of a given LBM m, 

m , was assumed to follow a Bernoulli distribution with parameter 
m , the probability of a 
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LBM of type m
  being contaminated. In other words, 

m  could be interpreted as the LBM-level 

prevalence for LBMs of type m
  (Equation.2.1): 

mmω ~ Bernoulli(γ )  (Equation 2.1) 

In each iteration, the contamination status of each LBM was first simulated, such that all 

pools from the same LBM originated from either a contaminated (i.e., some pools could be 

positive) or noncontaminated LBM (i.e., all these pools were necessarily negative). Because 

models were simulated separately for poultry and environmental samples, the interpretation of 

LBM-level prevalence differed accordingly: the LBM-level prevalence estimated from a model 

based on poultry (or environmental) samples referred to the proportion of LBMs with at least 1 

infected poultry (or contaminated environmental site). 

The real-time reverse transcription PCR result of pool i in LBM m, ,yi m , was assumed to 

follow a Bernoulli distribution with parameter ,i m
  (Equation 2.2), the probability of pool i being 

contaminated (Equation 2.3): 

,i m i,my  ~ Bernoulli( )  (Equation 2.2) 

i,m m i,mθ = ω × λ  (Equation 2.3) 

i,mλ  was the probability of pool i in LBM m being contaminated if this LBM was 

contaminated. If LBM m was not contaminated ( 0m  ), all pools from this LBM were 

negative by real-time reverse transcription PCR ( ,y 0i m  ). If LBM m was contaminated ( 1
m

 

), ,yi m was then simulated by a Bernoulli trial with parameter ,i m  (as i,m i,mθ = λ ). A pool i was 

positive if at least 1 of its swabs was infected. Therefore, ,i m was expressed as a function of 1) 

the underlying bird– (or environmental swab)–level prevalence, ,i m and 2) the number of birds 

(or environmental swabs) comprising pool i in LBM m, ,i m
n  (Equation 2.4): 

i,mn

i,m i,mλ = 1-(1-π )  (Equation 2.4) 
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,i m  was assessed through a Bayesian hierarchical logistic regression to account for the 

hierarchical data structure. ,i m  only depended on the type of sample (Equation 2.5): 

j
i,m m j,i,m

j

logit(π ) = δ + β ×  (Equation 2.5) 

jβ  was a regression coefficient for sample of type j, and , ,j i m  an indicator variable, 

equal to 1 if the pool i in market m was of type j, and null otherwise. m  was the LBM-specific 

intercept. 

At the second level, m  was assumed to follow the LBM-specific normal distribution 

(Equation 2.6): 

m

2
m mδ ~ Normal(μ ,σ )  (Equation 2.6) 

The variance m

2σ  assumed that prevalence varied between LBMs after adjusting for a 

LBM-level predictor. The mean mμ  was modeled as a linear function of a LBM-level intercept, 

 , and 1 of the LBM-level predictors, B (Equation 2.7), which was used to differentiate the 

LBM-level prevalence: 

  
mmμ = + B ×  (Equation 2.7) 

m  was an indicator variable, equal to 1 if the market m was of type α; it was otherwise 

null. All unknown parameters were specified by weakly informed priors to enable the observed 

data to be the main contributor to the estimation of the posterior distributions (online Technical 

Appendix 1 Table). 

The models were run by using a Markov chain Monte Carlo simulation in JAGS (1) and 

R.3.4.2 (2). After a burn-in period of 5,000 iterations, each model was iterated up to the point 

where convergence was achieved in all parameters on the basis of the Gelman and Rubin statistic 

(3,4) and the effective sample size (5). Although LBM-level prevalence was estimated directly 

from each model, the underlying bird- and environmental site-level prevalence was estimated by 

taking the inverse logit transformation of the corresponding regression coefficients. Median and 

95% highest density interval are reported. All possible combinations of lower- and higher-level 
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regression predictors were tested. Models were compared with each other on the basis of the 

deviance information criterion (DIC) (6). Half of the variance of the posterior mean deviance 

was used as an estimate of the effective number of parameters (7). Models with lower DIC were 

considered to better support the data than those with higher DIC if the DIC difference was >5. 

Finally, a posterior predictive check was performed to assess model adequacy. In each iteration, 

model parameter values were sampled from their joint posterior distribution. The contamination 

status of each market, and in contaminated markets, the contamination status of each pool were 

then simulated. The pool-level prevalence was computed and formed the posterior predictive 

distribution along with those computed from other iterations. This prevalence was compared 

with the observed pool-level prevalence by using the Bayesian p value, which represents the 

probability that the former could be equal to or more extreme than the latter (7). 
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Technical Appendix 1 Table. Weakly informed priors used in models for analyzing prevalence of avian influenza A(H5) and A(H9) 
viruses in live bird markets, Bangladesh 

Equation Notation Prior distribution* 

2.1  Beta (1,1) 

2.5  Normal (0,1,000) 

2.6  Uniform (0, 100) 

2.7 B Normal (0, 1,000) 
2.7  Normal (0, 1,000) 
*Posterior distributions are presented in online Technical Appendix 2 Figures 2, 3 
(https://wwwnc.cdc.gov/EID/article/24/12/18-0879-Techapp2.pdf). 

 

 

Technical Appendix 1 Figure. Model for analyzing prevalence of avian influenza A(H5) and A(H9) 

viruses in live bird markets, Bangladesh. The 2-level hierarchical relationship between data and model 

parameters is presented. Rectangles indicate constants, and circles indicate variables. Solid arrows 

indicate stochastic dependency, and dashed arrows indicate deterministic dependency. Subscript letters 

correspond to those in the model description. 


