than honeybees. The insect stings in this patient are a likely
gateway of the reported infection.

In summary, clinicians and microbiologists should be
aware of fastidious organisms in atypical infections in im-
munocompromised patients. Our findings indicate a need
for prolonged culture on specific agar on all joint fluids in
patients with agammaglobulinemia and targeted molecular
methods to identify *S. apis* organisms.

Acknowledgments

We thank Anne Laurence Thomi Georgelin, who referred the
patient to the Necker-Pasteur Center for Infectious Diseases and
Tropical Medicine; Valérie Zeller for the management of septic
polyarthritis; and Philippe Lanotte and Marie-Pierre Dubrana,
who participated in molecular analysis.

About the Author

Dr. Etienne is an infectious disease clinician and a clinical
immunologist in Necker-Pasteur Center for Infectious
Diseases, Paris. His research interest focuses on infections in
immunocompromised patients.

References

1. Schabereiter-Gurtner C, Nehr M, Apfalter P, Makristathis A,
Rotter ML, Hirschl AM. Evaluation of a protocol for molecular
broad-range diagnosis of culture-negative bacterial infections in
http://dx.doi.org/10.1111/j.1365-2672.2007.03648.x

2. Devulder G, Perrière G, Baty F, Flandrois JP. BIBI, a

3. Meeus I, Verrecyssse V, Smaghege G. Molecular detection of
* Spiroplasma apis* and *Spiroplasma melliferum* in bees. J Invertebr

Herrmann R, editors. Molecular biology and pathogenicity of

5. Mouches C, Bové JM, Tully JG, Rose DL, McCoy RE,
Carle-Junca P, et al. *Spiroplasma apis*, a new species from the

6. Schwarz RS, Teixeira EW, Tauber JP, Birke JM, Martins MF,
Fonseca I, et al. Honey bee colonies act as reservoirs for two
* Spiroplasma* facultative symbionts and incur complex, multi-year
http://dx.doi.org/10.1002/mbo3.172

Bloemberg G, et al. Hepatitis from * Spiroplasma sp.* in an
http://dx.doi.org/10.1111/ajt.13254

8. Lorenz B, Schroeder J, Reischl U. First evidence of an endogenous
* Spiroplasma sp.* infection in humans manifesting as unilateral
cataract associated with anterior uveitis in a premature baby.
http://dx.doi.org/10.1007/s00417-002-0453-3

First human systemic infection caused by * Spiroplasma*. J Clin

Address for correspondence: Olivier Lortholary, Necker-Enfants Malades
University Hospital, 149 rue de Sevres 75743, Paris CEDEX, France;
email: olivier.lortholary@aphp.fr

Mycoplasma ovipneumoniae in Wildlife Species beyond
Subfamily *Caprinae*

Margaret A. Highland, David R. Herndon, Scott
C. Bender, Lisa Hansen, Robert F. Gerlach,
Kimberlee B. Beckmen

Author affiliations: Washington Animal Disease Diagnostic
Laboratory, Pullman, Washington, USA (M.A. Highland); US
Department of Agriculture, Pullman (M.A. Highland,
D.R. Herndon); Navajo Technical University, Crownpoint, New
Mexico, USA (S.C. Bender); Barron Veterinary Clinic, Barron,
Wisconsin, USA (L. Hansen); Alaska Department of Environmental
Conservation, Anchorage, Alaska, USA (R.F. Gerlach); Alaska
Department of Fish and Game, Fairbanks, Alaska (K.B. Beckmen)

DOI: https://doi.org/10.3201/eid2412.180632
Elucidating the emergence of *Mycoplasma ovipneumoniae*–associated respiratory disease in ruminants requires identification of the pathogen host range. This bacterium was thought to be host restricted to subfamily *Caprinae*, but we describe its identification in healthy moose, caribou, and mule deer and diseased mule and white-tailed deer, all species in subfamily *Capreolinae*.

Mycoplasma ovipneumoniae was identified in Queensland, Australia, in 1972 as an infectious agent associated with pneumonia in domestic sheep (*Ovis aries*) (1). Since then, it has most frequently been identified in healthy and diseased domestic sheep, domestic goats (*Capra aegagrus hircus*), and bighorn sheep (*Ovis canadensis*). Although *M. ovipneumoniae* was identified in respiratory disease outbreaks in bighorn sheep as early as 1980 (2), the past decade has brought it under scrutiny because of evidence supporting its association with bighorn sheep pneumonia in western North America (3). Because most reports have described this bacterium in sheep and goats, and fewer in muskoxen (*Ovibos moschatus*) (4), some have concluded that *M. ovipneumoniae* is specific to the subfamily *Caprinae* (5) or has a host range limited to *Caprinae* (6), despite publications describing *M. ovipneumoniae* in non-*Caprinae* species, including Beira antelope (*Dorcataurus megalotis*) with respiratory disease in Qatar (7) and in 9 cattle (*Bos taurus*) in Colorado, USA (8). Unfortunately, description of the method(s) used to identify *M. ovipneumoniae* in those reports was limited to stating the use of PCR with no supporting sequence data.

In general, definitive claims of host range restrictions are absent from mycoplasma literature, because “assumptions about restricted host range of mycoplasmas, based on the host from which they were first or frequently isolated, are usually made in the context of nearly complete absence of representative sampling of the vast majority of potential vertebrate hosts” (9). In addition to insufficient sampling of potential hosts, the fastidious and variably culturable nature of *M. ovipneumoniae* often requires molecular techniques for identification. We used molecular techniques to analyze multiple species from the subfamily *Capreolinae* for the presence of *M. ovipneumoniae*.

During July 2017–January 2018, the US Department of Agriculture Agricultural Research Service in Pullman, WA, USA, received nasal swab samples from 230 moose (*Alces alces*) and 243 caribou (*Rangifer tarandus*) from Alaska and 5 mule deer (*Odocoileus hemionus*) from Arizona (online Technical Appendix, https://wwwnc.cdc.gov/EID/article/24/12/18-0632-Techapp1.pdf). Also received in February 2018 was an isolate of *M. ovipneumoniae* that had been cultured by Newport Laboratories (Worthington, MN, USA) from lung tissue from a white-tailed deer (*Odocoileus virginianus*) that died during a pneumonia outbreak at a captive facility in the upper Midwest region of the United States in 2016. We extracted DNA from swab samples and from the white-tailed deer isolate, performed PCR using a modified published PCR method (10) to amplify part of the 16S rRNA gene, and sequenced amplicons of the correct size (online Technical Appendix). Forward and reverse sequences were merged, manually inspected for errors, and trimmed to 290 bp using Sequencher 5.2.2 (Gene Codes, Ann Arbor, MI, USA) corresponding to a 103–392-bp region of the 16S rRNA gene of type strain Y98 obtained from American Type Culture Collection (ATCC; Manassas, VA, USA). Sequences were blastn queried (https://www.ncbi.nlm.nih.gov/BLAST/) and identified as *M. ovipneumoniae* at 100% coverage and ≥97% identity to Y98 (GenBank accession no. NR_025989.1). The analyzed region represents the most divergent region of the 16S rRNA gene among strains of *M. ovipneumoniae* and between *Mycoplasma* spp. of the highest percentage identity to *M. ovipneumoniae* (online Technical Appendix).

We detected *M. ovipneumoniae* in 6 moose (2.6%), including 3 from 2 captive facilities and 3 free-ranging; 5 free-ranging caribou (2.1%); and 2 of 5 mule deer, 1 of which was coughing and had nasal discharge at the time of sample collection. The identity of the lung isolate, cultured from the white-tailed deer that had died from pneumonia, was confirmed as *M. ovipneumoniae*. For sequence comparison, we generated a percent identity matrix with the *M. ovipneumoniae* sequences from the *Capreolinae* species, nasal swabs collected from 2 healthy *M. ovipneumoniae*–positive wild sheep (online Technical Appendix), Y98, and bacteria of the closest identity to Y98 and sequences generated in this study based on blastn queries (*M. dispar*, *M. hyopneumoniae*, and *M. flocculare*) (online Technical Appendix). The percent identity matrix revealed 2 groupings of *M. ovipneumoniae* and illustrates the divergence from the other *Mycoplasma* spp. of closest identity to *M. ovipneumoniae*. Sample sequences have been submitted to GenBank (online Technical Appendix).

This report describes *M. ovipneumoniae* carriage in multiple members of the subfamily *Capreolinae* (moose, caribou, and mule deer), and emergence of *M. ovipneumoniae*–associated respiratory disease in deer. These findings are of importance to epidemiologic investigations because current dogma regarding host specificity may dissuade laboratories from pursuing identification of this fastidious bacterium in hosts beyond the subfamily *Caprinae*. Improved diagnostic methods to increase detection sensitivity are warranted based on information provided in this report (online Technical Appendix). Full-length genome sequencing and phylogenetic analysis of *M. ovipneumoniae* isolates are necessary next steps in inferring evolutionary relationships and origin of this bacterium in identified host species.
Acknowledgments
We thank Nicholas P. Durfee and Paige Grossman for technical support, Eric Roalson for assistance with sequence analysis, and Donald P. Knowles for final critical manuscript review. We acknowledge the following individuals and agencies for providing wildlife samples: Sara Longson, Anne Crane, John Crouse, Dominic Demma, Torsten Bentzen, Tony Hollis, Lincoln Parrett, Jason Caikoski, Warren Hansen, and the wildlife biologists and technicians at the Alaska Department of Fish and Game; Navajo Nation Zoological and Botanical Park—Navajo Nation Department of Fish and Wildlife; Ed Klein and Dan Love, Colorado Department of Agriculture; and Anthony Madrid and Lindsey Hansen, US Department of Agriculture Forest Service, San Juan National Forest.

Financial support for this project was provided by the US Department of Agriculture Agricultural Research Service, CRIS Project funds 2090–32000–036–00D.

About the Author
Dr. Highland is a veterinary medical officer at the US Department of Agriculture Agricultural Research Service Animal Disease Research Unit in Pullman, WA, USA, and is an adjunct faculty member in the department of veterinary microbiology and pathology and the School for Global Animal Health at Washington State University. Her research interests include infectious diseases of small ruminants, with special focus on respiratory disease agents of domestic and wildlife species.

References

Address for correspondence: Margaret A. Highland, US Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, ADBF 3003, Washington State University, Pullman, WA 99164, USA; email: maggie.highland@ars.usda.gov

Locally Acquired Leptospirosis in Expedition Racer, Manitoba, Canada

Sameer S. Kassim, Antonia Dibernardo, L. Robbin Lindsay, Terence C. Wuerz

Author affiliations: University of Manitoba, Winnipeg, Manitoba, Canada (S.S. Kassim, T.C. Wuerz); Public Health Agency of Canada, Winnipeg (A. Dibernardo, L.R. Lindsay); St. Boniface General Hospital, Winnipeg (T.C. Wuerz)

DOI: https://doi.org/10.3201/eid2412.181015

Leptospirosis is found worldwide, except in northern regions. We report a case associated with a backcountry adventure race in Manitoba, Canada. Initially, nonspecific symptomatology and diagnostic pitfalls contributed to a delay in identification. Careful attention needs to be paid to exposure to and risk for leptospirosis in northern and temperate climates.

Leptospirosis is a zoonotic disease caused by Leptospira interrogans (motile bacterial spirochetes). Human transmission occurs by direct contact with contaminated urine or animals (1). The organism has a worldwide distribution outside of polar regions and is common during the rainy season in tropical and temperate climates (2).