About the Author

Mr. Loyola is a researcher in the Genomics & Pathogen Discovery Unit at the US Naval Medical Research Unit No. 6, in Lima, Peru. His primary research interest is the characterization of new and emerging pathogens.

References

Address for correspondence: Mariana Leguia, Pontificia Universidad Católica del Perú, Av. Universitaria No. 1801, San Miguel, Lima, Perú; email: mariana.leguia@pucp.edu.pe

Spontaneous Abortion Associated with Zika Virus Infection and Persistent Viremia

Anna Goncé, Miguel J. Martínez, Elena Marbán-Castro, Adela Saco, Anna Soler, Maria Isabel Alvarez-Mora, Aida Peiro, Verónica Gonzalo, Gillian Hale, Julu Bhatnagar, Marta López, Sherif Zaki, Jaime Ordi, Azucena Bardaij

Author affiliations: BCNatal–Barcelona Center of Maternal-Fetal and Neonatal Medicine, Barcelona, Spain (A. Gonzé, M. López); ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona (M.J. Martínez, E. Marbán-Castro, J. Ordi, A. Bardaij); Hospital Clinic, Barcelona (M.J. Martínez, A. Saco, A. Peiro, V. Gonzalo, J. Ordi); Hospital Clinic, IDIBAPS and CIBERER, Barcelona (A. Soler, M.I. Alvarez-Mora); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (G. Hale, J. Bhatnagar, S. Zaki)

DOI: https://doi.org/10.3201/eid2405.171479

We report a case of spontaneous abortion associated with Zika virus infection in a pregnant woman who traveled from Spain to the Dominican Republic and developed a rash. Maternal Zika viremia persisted at least 31 days after onset of symptoms and 21 days after uterine evacuation.

Evidence regarding the association of Zika virus infection and pregnancy loss (spontaneous abortions and stillbirths) has been reported recently (1). Zika virus has been detected by reverse transcription PCR (RT-PCR) in brain tissue samples from stillborn infants and from placental tissue obtained from pregnancy losses (2,3). We report a case of early pregnancy loss associated with Zika virus with evidence of persistent maternal viremia after uterine evacuation.

In mid-June 2016, a 22-year-old woman, who was in the seventh week of gestation, traveled from Spain to the Dominican Republic. Fifteen days after her arrival, she developed a mild macular rash and malaise that resolved after 3 days (Figure). One day after her return to Spain (at 10.5 weeks of pregnancy and 9 days after the onset of symptoms), a routine first-trimester prenatal scan showed an embryo without cardiac activity and a crown–rump length of 19 mm, compatible with a pregnancy loss at an estimated gestational age of 8 weeks and 4 days (Figure). On July 5, 2016, a maternal serum sample tested positive for Zika virus by a commercial real-time RT-PCR with a cycle threshold (Ct) value of 33, and a urine sample was
negative by real time RT-PCR (details on laboratory testing in online Technical Appendix, https://wwwnc.cdc.gov/EID/article/24/5/17-1479-Techapp1.pdf). We detected Zika virus IgM and IgG by a commercial immunofluorescence assay (see online Technical Appendix).

The patient was offered a chorionic villi sampling; the genetic analysis was normal. Surgical evacuation of the uterus was performed by vacuum aspiration followed by curetage. We detected Zika virus by real time RT-PCR in both the transport medium in which the chorionic biopsy was stored ($C_t = 36$) and the supernatant of the karyotype cell culture ($C_t = 12$). Differences in real-time PCR C_t values can be explained by active viral replication in the karyotype cell culture. We used the supernatant of the karyotype cell culture to inoculate Vero cells, where we observed a cytopathic effect. We confirmed virus isolation by subsequent infection of new Vero cells, RT-PCR analysis, and sequencing of the Zika virus envelope gene. This analysis suggested active Zika virus replication in embryonic cells. We also detected Zika virus by real time RT-PCR in fresh placental tissue samples from vacuum aspiration (online Technical Appendix).

Formalin-fixed paraffin-embedded placental tissues were also analyzed at the Centers for Disease Control and Prevention (CDC; Atlanta, GA, USA). Histopathological analyses of these placental tissues revealed perivillous fibrinoid deposition, focal coarse calcifications, and moderate increase of Hofbauer cells. The histological sections of the placental tissue, which were stained with hematoxylin and eosin, showed a focus of villous necrosis associated with calcifications. A small portion of embryonic membranes was visible, showing no noteworthy inflammatory infiltrate. Immunohistochemical testing on placental tissue did not show presence of Zika virus–specific immunostaining. The histological findings were not relevant to the diagnosis. No specific changes were observed, neither associated inflammation was identified, and only nonspecific mild abnormalities were present. Nevertheless, Zika virus RT-PCR assays and sequencing performed on RNA extracted from placental tissues identified the presence of Zika virus in the sample ($C_t = 37$). On July 6, 21 days after vacuum aspiration and 31 days after the onset of symptoms, we detected Zika virus in maternal serum samples using RT-PCR ($C_t = 37$).

Our investigation found evidence of Zika virus infection in tissue samples from an early pregnancy loss in a mother infected with Zika virus in the first trimester of pregnancy.
Testing of tissues from vacuum aspiration and fromchorionic villi sampling revealed that placenta andchorion contained Zika virus RNA. Isolation of Zika virus from thekaryotype cell culture confirmed active viral replication inembryonic cells. All the tests performed suggest that the spontaneousabortion in this woman was likely associated with a sympto-matic Zika virus infection occurring early in pregnancy. Thesefindings provide further evidence of the associationbetween Zika virus infection early in pregnancy andtransplacental infection, as well as embryonic damage, leadingto poor pregnancy outcomes (2). Given that embryo loss hadprobably occurred days before maternal-related symptoms,we hypothesize that spontaneous aborption happenedearly during maternal viremia. The prolonged viremia in themother beyond the first week after symptom onset concurswith other recent reports (1,5). However, persistent viremia3 weeks after pregnancy outcome has not been describedpreviously and underscores the current lack of knowledge regarding the persistence of Zika virus infection. Becausewe identified Zika virus RNA in placental tissues, ourfindings reinforce the evidence for early gestational placental tissue as the preferred target for viral tropism (2,4). Finally,although laboratory tests were performed to dismiss othermaternal infections (see online Technical Appendix), theattribition of Zika virus as the cause of the spontaneousabortion must be interpreted with caution, because a non–Zika-related etiology cannot be entirely ruled out. Further studiesare warranted to investigate the natural history of Zika virusinfection in pregnant women.

This work was funded by grant no. PI16/0123. ISCIII-AES- Proyectos de Investigación en Salud, 2016, Government of Spain.

About the Author

Dr. Goncé is an associate professor of obstetrics and gynecology at Hospital Clinic, University of Barcelona, Spain. Her main research focus is perinatal infections, including Zika virus.

References

Address for correspondence: Azucena Bardají, ISGlobal, Hospital Clinic, Universitat de Barcelona, Rosselló, 132, 5-1, 08036 Barcelona, Spain; email: azucena.bardaji@isglobal.org

Isolation of Oropouche Virus from Febrile Patient, Ecuador

Emma L. Wise, Steven T. Pullan, Sully Márquez, Verónica Paz, Juan D. Mosquera, Sonia Zapata, Simon K. Jackson, Gyorgy Fejer, Gabriel Trueba, Christopher H. Logue

DOI: https://doi.org/10.3201/eid2405.171569

We report identification of an Oropouche virus strain in afebrile patient from Ecuador by using metagenomic sequenc-ing and real-time reverse transcription PCR. Virus wasisolated from patient serum by using Vero cells. Phylogeneticanalysis of the whole-genome sequence showed the virus tobesimilar to a strain from Peru.

Oropouche virus (OROV) is a negative-sense, single-stranded RNA virus (family Bunyaviridae, genus Orb- thobunyaviridae) with a tripartite genome consisting of largel (L), medium (M), and small (S) segments. OROV causesaself-limiting acute febrile illness, Oropouche fever (1). Sinceits discovery in Trinidad in 1955 (2), >30 outbreaks of OROVhave been reported from Brazil, Panama, and Peru, demon-strating the ability of this midgeborne virus to cause epidemicsex. Approximately 500,000 cases of Oropouche feverhave been reported, making OROV one of the mostclinically significant orbunyaviruses (3). Two previousstudies reported unconfirmed infections in Ecuador by using