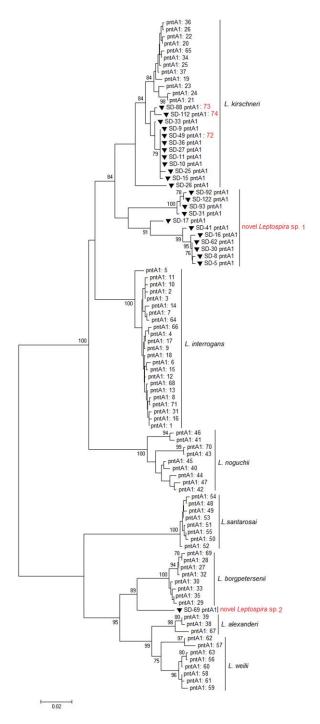
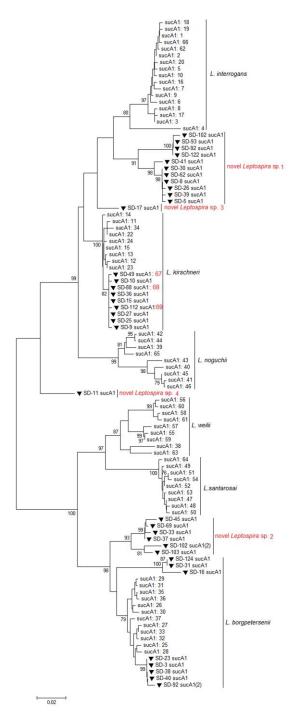
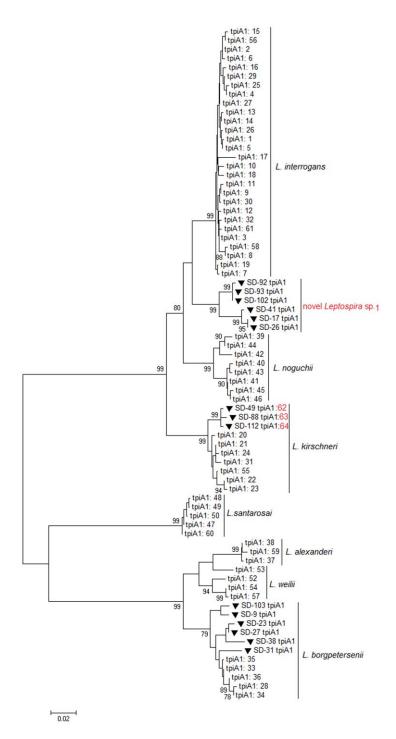
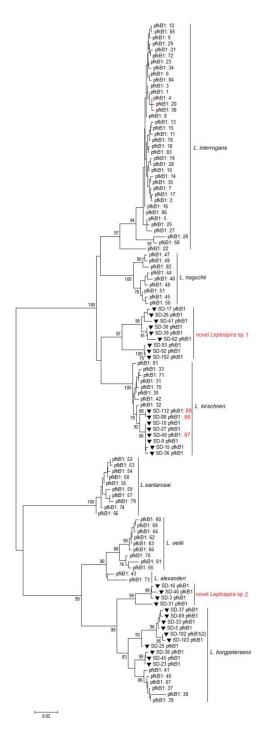

Pathogenic *Leptospira* Species in Insectivorous Bats, China, 2015

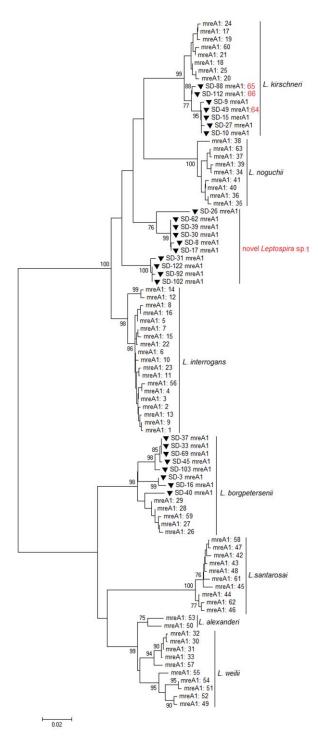

Technical Appendix

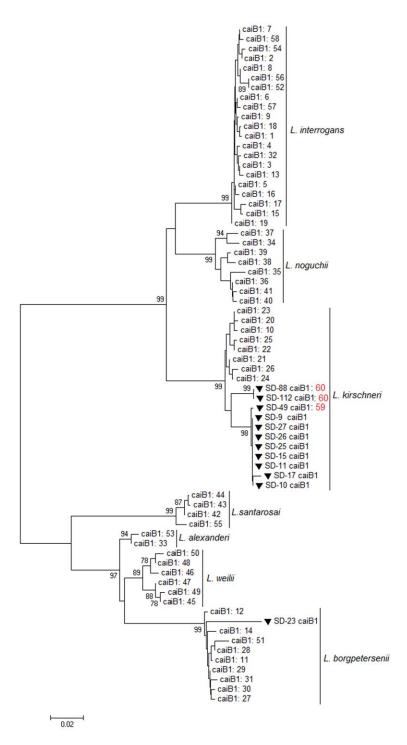
Technical Appendix Table. Multilocus sequence typing (MLST) of Leptospira in bats, Mengyin County, Shandong Province, China										
Bat species	Bat no.	glmU	pntA	sucA	tpiA	pfkB	mreA	caiB	ST	Co-infection
M. fimbriatus	SD-88	Lk (62)	Lk (73)	Lk (68)	Lk (63)	Lk (88)	Lk (65)	Lk (60)	ST246	1
M. fimbriatus	SD-112	Lk (63)	Lk (74)	Lk (69)	Lk (64)	Lk (89)	Lk (66)	Lk (60)	ST245	1
M. fimbriatus	SD-124	Lb	_	Lb	_	_	_	_	_	1
M. fimbriatus	SD-122	N1	N1	N1	_	_	N1	_	_	1
M. fimbriatus	SD-93	N1	N1	N1	N1	N1	_	_	_	1
M. fimbriatus	SD-103	Lb	_	N2	Lb	Lb	Lb	_	_	2
M. fimbriatus	SD-102	N1	_	N1/N2	N1	N1/ <i>Lb</i>	N1	_	_	3
M. ricketti	SD-92	N1	N1	N1/ <i>Lb</i>	N1	N1	N1	_	_	2
M. pequinius	SD-49	Lk (61)	Lk (72)	Lk (67)	Lk (62)	Lk (87)	Lk (64)	Lk (59)	ST244	1
M. pequinius	SD-10	Lk	Lk	Lk	_	Lk	Lk	Lk	_	1
M. pequinius	SD-15	Lk	Lk	Lk	_	Lk	Lk	Lk	_	1
M. pequinius	SD-36	Lk	Lk	Lk	_	Lk	_	_	_	1
M. pequinius	SD-21	Lb	_	_	_	_	_	_	_	1
M. pequinius	SD-23	Lb	_	Lb	Lb	Lb	_	Lb	_	1
M. pequinius	SD-38	Lb	_	Lb	Lb	Lb	_	_	_	1
M. pequinius	SD-8	N1	N1	N1	_	_	N1	_	_	1
M. pequinius	SD-30	N1	N1	N1	_	N1	N1	_	_	1
M. pequinius	SD-62	N1	N1	N1	_	N1	N1	_	_	1
M. pequinius	SD-41	N1	N1	N1	N1	N1	_	_	_	1
M. pequinius	SD-39	N1	_	N1	_	N1	N1	_	_	1
M. pequinius	SD-25	Lk	Lk	Lk	_	Lb	_	Lk	_	2
M. pequinius	SD-9	Lk	Lk	Lk	Lb	Lk	Lk	Lk	_	2
M. pequinius	SD-27	Lk	Lk	Lk	Lb	Lk	Lk	Lk	_	2
M. pequinius	SD-3	Lb	_	Lb	_	N2	Lb	_	_	2
M. pequinius	SD-40	Lb	_	Lb	_	N2	Lb	_	_	2
M. pequinius	SD-5	Lb	N1	N1	_	Lb	_	_	_	2
M. pequinius	SD-69	Lb	N2	N2	_	Lb	Lb	_	_	2
M. pequinius	SD-33	Lb	Lk	N2	_	Lb	Lb	_	_	2
M. pequinius	SD-37	Lb	_	N2	_	Lb	Lb	_	_	2
M. pequinius	SD-45	Lb	_	N2	_	Lb	Lb	_	_	2
M. pequinius	SD-26	N1	Lk	N1	N1	N1	N1	Lk	_	2
M. pequinius	SD-31	Lb	N1	Lb	Lb	N2	N1	_	_	3
M. pequinius	SD-16	Lb	N1	Lb	_	N2	Lb	_	_	3
M. pequinius	SD-11	Lb	Lk	N4	_	_	_	Lk	_	3
M. pequinius	SD-17	N1	N1	N3	N1	N1	N1	Lk	_	3


^{*}For SD-49, SD-88, and SD-112, novel alleles assigned are shown in the parentheses. *Lb, L. borgpetersenii*; *Lk, L. kirschneri*; N1, potential new *Leptospira* sp. 1; N2, potential new *Leptospira* sp. 2; N3, potential new *Leptospira* sp. 3; N4, potential new *Leptospira* sp.


Technical Appendix Figure 1. Neighbor-joining phylogenetic tree for *glmU* gene of *Leptospira* in bats, Mengyin County, Shandong Province, China. The tree was constructed with Kimura's 2-parameter model using MEGA 7.0, and bootstrap values were calculated with 1,000 replicates. Alleles of each locus detected in this study are shown with the sample number highlighted with a triangle, and novel allele numbers assigned in this study are indicated in red. *Leptospira* species are shown on the right, and potential new *Leptospira* species detected in this study are shown in red.


Technical Appendix Figure 2. Neighbor-joining phylogenetic tree for *pntA* gene of *Leptospira* in bats, Mengyin County, Shandong Province, China. The tree was constructed with Kimura's 2-parameter model using MEGA 7.0, and bootstrap values were calculated with 1,000 replicates. Alleles of each locus detected in this study are shown with the sample number highlighted with a triangle, and novel allele numbers assigned in this study are indicated in red. *Leptospira* species are shown on the right, and potential new *Leptospira* species detected in this study are shown in red.


Technical Appendix Figure 3. Neighbor-joining phylogenetic tree for *sucA* gene of *Leptospira* in bats, Mengyin County, Shandong Province, China. The tree was constructed with Kimura's 2-parameter model using MEGA 7.0, and bootstrap values were calculated with 1,000 replicates. Alleles of each locus detected in this study are shown with the sample number highlighted with a triangle, and novel allele numbers assigned in this study are indicated in red. *Leptospira* species are shown on the right, and potential new *Leptospira* species detected in this study are shown in red.


Technical Appendix Figure 4. Neighbor-joining phylogenetic tree for *tpiA* gene of *Leptospira* in bats, Mengyin County, Shandong Province, China. The tree was constructed with Kimura's 2-parameter model using MEGA 7.0, and bootstrap values were calculated with 1,000 replicates. Alleles of each locus detected in this study are shown with the sample number highlighted with a triangle, and novel allele numbers assigned in this study are indicated in red. *Leptospira* species are shown on the right, and potential new *Leptospira* species detected in this study are shown in red.

Technical Appendix Figure 5. Neighbor-joining phylogenetic tree for *pfkB* gene of *Leptospira* in bats, Mengyin County, Shandong Province, China. The tree was constructed with Kimura's 2-parameter model using MEGA 7.0, and bootstrap values were calculated with 1,000 replicates. Alleles of each locus detected in this study are shown with the sample number highlighted with a triangle, and novel allele numbers assigned in this study are indicated in red. *Leptospira* species are shown on the right, and potential new *Leptospira* species detected in this study are shown in red.

Technical Appendix Figure 6. Neighbor-joining phylogenetic tree for *mreA* gene of *Leptospira* in bats, Mengyin County, Shandong Province, China. The tree was constructed with Kimura's 2-parameter model using MEGA 7.0, and bootstrap values were calculated with 1,000 replicates. Alleles of each locus detected in this study are shown with the sample number highlighted with a triangle, and novel allele numbers assigned in this study are indicated in red. *Leptospira* species are shown on the right, and potential new *Leptospira* species detected in this study are shown in red.

Technical Appendix Figure 7. Neighbor-joining phylogenetic tree for *caiB* gene of *Leptospira* in bats, Mengyin County, Shandong Province, China. The tree was constructed with Kimura's 2-parameter model using MEGA 7.0, and bootstrap values were calculated with 1,000 replicates. Alleles of each locus detected in this study are shown with the sample number highlighted with a triangle, and novel allele numbers assigned in this study are indicated in red. *Leptospira* species are shown on the right, and potential new *Leptospira* species detected in this study are shown in red.