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Highly Pathogenic Avian Influenza A(H5N8) 
Virus, Cameroon, 2017 

Technical Appendix 

Materials and Methods 

Sample Collection and Laboratory Analysis 

The Cameroon Epidemio-Surveillance Network (RESCAM) of the Ministry of Livestock, 

Fisheries and Animal Industries (MINEPIA) collected 1 dead peacock during the outbreak in 

Makilingaye township and sent it to the National Veterinary Laboratory (LANAVET) in Garoua 

for analysis. In addition, we collected tracheal and cloacal swabs from 50 chickens, 55 ducks, 11 

guinea fowls, and 6 pigeons during avian influenza field investigations in Maroua, Yagoua, and 

Guidiguis’ central poultry markets (Technical Appendix Table 1). We sent these samples to the 

same laboratory for analysis. We extracted viral RNA from all the samples using the QIamp 

RNA mini kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. We 

conducted RNA detection of the H5 gene using real-time reverse transcription PCR (RT-PCR) 

(1) followed by RNA detection of the N8 gene (2). 

Genome Sequencing 

At the World Organization for Animal Health (OIE)/Food and Agriculture Organization 

of the United Nations (UN-FAO) Reference Laboratory for Avian Influenza (Istituto 

Zooprofilattico Sperimentale delle Venezie, Legnaro, PD) in Italy, total RNA was purified from 

4 HPAI H5N8-positive clinical samples using the Nucleospin RNA kit (Macherey–Nagel, 

Düren, Germany). Complete influenza A virus genomes were amplified with the SuperScript III 

One-Step RT-PCR system with Platinum Taq High Fidelity (Invitrogen, Carlsbad, CA, USA) 

using 1 pair of primers complementary to the conserved elements of the influenza A virus 

promoter (3). Sequencing libraries were obtained using a Nextera DNA XT Sample preparation 

kit (Illumina, San Diego, CA, USA) following the manufacturer’s instructions and quantified 

using the Qubit dsDNA High Sensitivity kit (Invitrogen). We determined the average fragment 
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length using the Agilent High Sensitivity Bioanalyzer Kit (Agilent Technologies, Santa Clara, 

CA, USA). The indexed libraries were pooled in equimolar concentrations and sequenced in 

multiplex for 250 bp paired-end on Illumina MiSeq, according to the manufacturer’s instructions. 

High-Throughput Sequencing Data Analysis 

We assessed the Illumina reads’ quality using FastQC v0.11.2 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc). We filtered the raw data by 

removing reads with more than 10% of undetermined (N) bases, reads with more than 100 bases 

with Q score below 7, and duplicated paired-end reads. We clipped the remaining reads from 

Illumina Nextera XT adaptors with scythe v0.991 (https://github.com/vsbuffalo/scythe) and 

trimmed them with sickle v1.33 (https://github.com/najoshi/sickle). We discarded reads shorter 

than 80 bases or unpaired after previous filters. We then aligned the high-quality reads against a 

reference genome using BWA v0.7.12 (4). We processed the alignments with Picard-tools v2.1.0 

(http://picard.sourceforge.net) and GATK v3.5 (5,6,7) to correct potential errors, realign reads 

around indels, and recalibrate base quality. We called single nucleotide polymorphisms using 

LoFreq v2.1.2 (8) and used the outputs to generate the consensus sequences. We obtained the 

complete genome of viruses A/chicken/Cameroon/17RS1661–1/2017 and 

A/duck/Cameroon/17RS1661–3/2017; the HA, NA, MA, NP, NS, and PB2 gene segments of 

A/pigeon/Cameroon/17RS1661–4/2017; and the HA and NA gene segments of the virus 

A/Indian_peafowl/Cameroon/17RS1661–6/2017. 

Phylogenetic Analyses 

We compared the sequences of the 8 gene segments of the H5N8 viruses from Cameroon 

with all the H5 sequences belonging to clade 2.3.4.4 group B available in GISAD and with the 

50 most related sequences resulted from the BLAST search. We aligned sequences of each gene 

segment using MAFFT v. 7 (9). We obtained maximum likelihood phylogenetic trees for each 

gene segment using the best-fit general time-reversible model of nucleotide substitution with 

gamma-distributed rate variation among sites (with 4 rate categories, Γ4) and a heuristic SPR 

branch-swapping search (10) available in the PhyML program v3.1. To assess the robustness of 

individual nodes of the phylogeny, we performed 1,000 bootstrap replicates. Phylogenetic trees 

were visualized with the program FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). 
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Estimation of Time to the Most Recent Common Ancestor  

We estimated the tMRCAs of the HPAI H5N8 identified in Cameroon for the HA gene 

segment using BEAST v1.8.4 software (11). We selected a HKY85 + Γ4 nucleotide substitution 

model with two data partitions reflecting codon positions (1st + 2nd positions, 3rd position) and 

with base frequency unlinked across all codon positions (SRD06 substitution model). In addition, 

we used a relaxed (uncorrelated lognormal) molecular clock and constant population size 

coalescent as the tree prior. We used Markov chain Monte Carlo (MCMC) and chain lengths of 

100 million iterations to achieve convergence as assessed using Tracer v1.6 

(http://beast.bio.ed.ac.uk/Tracer). The maximum clade credibility (MCC) phylogenetic tree was 

summarized from the posterior distribution of trees using TreeAnnotator v1.8.4 (11) after the 

removal of an appropriate burn-in (10% of the samples). The MCC tree was visualized using 

FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) (Technical Appendix Figure 9). 
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Technical Appendix 1 Table. Number of positive samples in the total number of sampled animals (no. pos/no. samples) from each 
market 

Animal 
Maroua market 

no. pos/no. samples 
Yagoua market 

no. pos/no. samples 
Guidiguis market 

no. pos/no. samples 
Total 

no. pos/no. samples 
Chicken 1/13 0/26 0/11 1/50 
Pigeon 1/4 0/1 0/1 1/6 
Guinea fowl 0/4 2/4 0/3 2/11 
Duck 0/16 1/24 0/15 1/55 
Total 2/37 3/55 0/30 5/122 
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Technical Appendix 1 Figure 1. Maximum likelihood phylogenetic tree of the hemagglutinin (HA) gene. 

The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 600/1000 are 

indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 
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Technical Appendix 1 Figure 2. Maximum likelihood phylogenetic tree of the neuraminidase (NA) gene. 

The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 600/1000 are 

indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 
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Technical Appendix 1 Figure 3. Maximum likelihood phylogenetic tree of the matrix protein (MP) gene. 

The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 600/1000 are 

indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 
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Technical Appendix 1 Figure 4. Maximum likelihood phylogenetic tree of the nucleoprotein (NP) gene. 

The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 600/1000 are 

indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 
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Technical Appendix 1 Figure 5. Maximum likelihood phylogenetic tree of the nonstructural protein (NS) 

gene. The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 600/1000 are 

indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 
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Technical Appendix 1 Figure 6. Maximum likelihood phylogenetic tree of the polymerase acidic protein 

(PA) gene. The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 

600/1000 are indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 
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Technical Appendix 1 Figure 7. Maximum likelihood phylogenetic tree of the polymerase basic protein 1 

(PB1) gene. The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 

600/1000 are indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 

 

Technical Appendix 1 Figure 8. Maximum likelihood phylogenetic tree of the polymerase basic protein 2 

(PB2) gene. The H5N8 viruses from Cameroon are marked in red. Bootstrap supports higher than 

600/1000 are indicated next to the nodes; scale bar indicates numbers of nucleotide substitutions per site. 
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Technical Appendix 1 Figure 9. Maximum clade credibility phylogenetic tree of the hemagglutinin (HA) 

gene. The H5N8 viruses from Cameroon are marked in red. Posterior probability values higher than 90% 

are indicated next to the nodes. The mean time to the most recent common ancestor (tMRCA) and the 

95% highest posterior density intervals of the relevant nodes are indicated in the gray boxes. 

 


