(L. martiniquensis) from the West Indies (3). All previously described L. siamensis strains, except 1, are now reported as L. martiniquensis. Their rDNA internal transcribed spacer 1 sequences are still deposited in GenBank under the name L. siamensis. The exception, reported from Thailand (GenBank accession no. JX195640), is the only known L. siamensis sample to date.

New analysis of Leishmania (Mundinia) sequences available in GenBank and of L. infantum showed no variability in L. martiniquensis, including the sequence (GenBank accession no. LT577674) reported by Polley et al. (1), and sequence divergence when compared with L. siamensis (32.4%), a Leishmania sp. from Ghana (32.3%) (4), L. enriettii (30.6%), and L. infantum (43.6%). L. martiniquensis has been reported worldwide (Florida, West Indies, central Europe, and Southeast Asia). However, L. siamensis has been reported only once (in Thailand).

If one considers possible quiescence of the parasite, and that the patient was from Guyana, migrated to the United Kingdom in 1967, and had a relevant travel history, including visits to France (2003), Ghana (2005), Caribbean Grenada (2012), and Guyana (2012 and 2013), the geographic origin of this infection is unknown. Moreover, the mode of transmission of L. martiniquensis is not yet clearly defined. In contrast to the report of Polley et al. (1), although the genus Sergentomyia could play a role in some foci of leishmaniasis, it has never been recorded in the Americas (5).

References


Address for correspondence: Jérôme Depauqit, Faculte de Pharmacie, Parasitology, 51 Rue Cognacq-Jay, Reuims 51100, France; email: jerome.depaqit@univ-reims.fr

Visceral Leishmaniasis in Traveler to Guyana CAUSED by Leishmania siamensis, London, UK

Saovanee Leelayoova, Suradej Siripattanapipong, Mathirut Munthin

Author affiliations: Phramongkutklao College of Medicine, Bangkok, Thailand (S. Leelayoova, M. Munthin); Mahidol University, Bangkok (S. Siripattanapipong)

DOI: https://doi.org/10.3201/eid2408.180192

To the Editor: Polley et al. reported a case of Leishmania siamensis infection outside Thailand (1). In Thailand, 2 Leishmania species, L. siamensis (MON-324, World Health Organization code MHOM/TH/2010/TR) and L. martiniquensis (MON-229, World Health Organization codes MHOM/TH/2011/PG and MHOM/MQ/92/MAR1), are sporadically reported in immunocompetent and immunocompromised patients and cause cutaneous and visceral leishmaniasis (2). Cases of asymptomatic visceral leishmaniasis caused by both species were also detected in HIV-infected patients in Thailand (3).

Before 2017, L. siamensis was described as having 2 lineages: PG and TR. Additional information from zymodeme and genetic analysis indicated that these 2 lineages are different species (i.e., lineage PG is L. martiniquensis and lineage TR is L. siamensis) (2). A review of leishmaniasis cases in Thailand during 1999–2016 (2) summarized the biological characteristics of L. martiniquensis and L. siamensis and clarified Leishmania species reported in humans (Thailand and Myanmar), animals (Thailand, Germany, Switzerland, and the United States), and sand flies (Thailand).

Polley et al. (1) reported phylogenetic analysis of internal transcribed spacer 1 sequences of 8 isolates of L. siamensis (GenBank accession nos. EF200012, JX195637, GQ281279, GQ226034, JQ866907, JQ617283, JQ001751, and GQ293226) against reference sequences of other Leishmania species. Their results confirmed that these sequences clustered with L. siamensis sequences as a monophyletic group, supported by bootstrap values of 100%.

However, 7 of these sequences (GenBank accession nos. EF200012, JX195637, GQ281279, GQ226034, JQ866907, JQ001751, and JQ617283) are L. martiniquensis sequences (MON-229), as reported in our article (2). Thus, we have revised and updated our sequences submitted to GenBank regarding the species of L. martiniquensis (MON-229) and L. siamensis (MON-324) for future analysis.

The patient had a history of traveling to Caribbean Grenada, which is in the same geographic area where L. martiniquensis was first reported (4). Thus, we believe
that the correct diagnosis for the 65-year-old woman in the study by Polley et al. (1) was visceral leishmaniasis caused by infection with *L. martiniquensis*.

References


Address for correspondence: Saovanee Leelayoova, Department of Parasitology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand; email: sleelayoova@gmail.com

Antimony [an′ti-mo"ne]

Mark D. Walker

One hundred years ago, John Brian Christopherson (1868–1955) discovered that antimony potassium tartrate was an effective treatment against schistosomiasis. Antimony had been previously used against visceral leishmaniasis, *Trypanosoma brucei gambiense*, and yaws. The ancient Egyptians used antimony paste as mascara. In the Middle Ages, it was used as a laxative, which, after swallowing and retrieval, could be reused. Alchemists used it to harden lead.

Its name might have been derived from the Egyptian word for the metal *sdm*, from which the Greek *stimmi*, then the Latin *stibium*, then the French *antimoine* were derived. A more interesting, but unlikely, origin is that the French *antimoine* translates as monk’s killer, referring to its toxicity to religious alchemists. Antimony potassium tartrate remained the treatment of choice for schistosomiasis until the development of praziquantel in the 1980s.

Sources

1. Challoner J. The elements; the new guide to the building blocks of our universe. London: Andre Deutsch Ltd; 2014.

Address for correspondence: Mark D. Walker, Department for the Natural Environment, Sheffield Hallam University, Howard St, Sheffield S1 1WB, UK; email: mark_david_walker@yahoo.co.uk

DOI: https://doi.org/10.3201/eid2408.ET2408