
not ferment glucose and maltose. However, F. tularensis type 
A and type B are capable of fermenting glucose and maltose 
(8). Moreover, F. tularensis–specific antigen and antibody 
tests did not confirm that this strain was F. tularensis (9).

Both amplicons of the patient’s 16S rRNA gene con-
tained PAEN 515F and PAEN 862F signature sequences. 
After searching the homologous sequence of the 2 ampli-
cons, the 16S rRNA gene sequence of P. assamensis GPT-
SA 11 displayed higher homology. Therefore, we conclud-
ed that the bacterium isolated from the patient’s joint fluid 
was not F. tularensis but P. assamensis. 

In 2005, a new species of Paenibacillus named P. as-
samensis GPTSA 11 was isolated from a warm spring in 
Assam, India (10). Since then, P. assamensis had not been 
isolated from other environments or patients. Our findings 
emphasize the need to consider new approaches for prevent-
ing infection in the environments where P. assamensis exists.

This patient remained at home to recuperate because 
of his obscure symptoms and financial constraints, but his 
symptoms did not abate until the follow-up in July 2017. 
He was advised to return to the hospital for treatment with 
drugs targeting P. assamensis. Isolation of P. assamensis 
from the living and working environments of patients, in-
cluding soil and water, can successfully reveal the source 
of infection.
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Dihydroartemisinin/piperaquine (DHA/PPQ) is increasingly 
deployed as an antimalaria drug in Africa. We report the 
detection in Mali of Plasmodium falciparum infections carrying 
plasmepsin 2 duplications (associated with piperaquine 
resistance) in 7/65 recurrent infections within 2 months after 
DHA/PPQ treatment. These findings raise concerns about 
the long-term efficacy of DHA/PPQ treatment in Africa.

Artemisinin combination therapy has been the 
cornerstone of malaria control in sub-Saharan Africa for 

the past 10 years and is typically represented by artemether/
lumefantrine and artesunate/amodiaquine. Because of the 
notorious capacities of Plasmodium falciparum to develop 
drug resistance, many antimalarial programs have recently 
included dihydroartemisinin/piperaquine (DHA/PPQ) as 
a second-line antimalarial drug. This decision is sensible, 
considering the recent reports of substantially decreased 
artemether/lumefantrine cure rates in some regions, 
signaling a potential focus of lumefantrine resistance (1).

DHA/PPQ has shown near-perfect efficacy levels in 
clinical trials conducted in Africa; the combination also 
has been proposed as a tool for intermittent preventive 
approaches (2). Unfortunately, full P. falciparum resistance 
to DHA/PPQ treatment has been reported recently in 
Cambodia (3,4). These events were directly associated with 
increased copy number variations (CNVs) in the plasmepsin 
system, including the pfpm2 gene (PF3D7_1408000) 
coding for the food vacuole enzyme plasmepsin II, which 
is speculated to be a major piperaquine target.

CNV is generally considered as emerging at relatively 
rapid mutation rates (a rate several orders of magnitude 
higher compared with that of single-nucleotide polymor-
phisms [5]) and is able to generate substantial diversity (6). 
Therefore, preexisting pfpm2 duplications in Cambodia 
might have been rapidly selected by DHA/PPQ, aided by 
a less effective protective action of the artemisinin deriva-
tive (7). Such a scenario suggests that this mutation may 
already be present in Africa.

To investigate this possibility, we analyzed a subset of 
archived P. falciparum DNA samples from clinical infec-
tions, derived from a set of large, multicenter comparative 
artemisinin combination therapy efficacy trials conducted 
in West Africa by the West African Network for Antima-
larial Drugs (8). These trials, performed during October 
2011–February 2016 in Mali, Burkina Faso, and Guinea, 
had a randomized double-blind design with a 2-year fol-
low-up for monitoring repeated treatment. Here we focus 
on the DHA/PPQ trial conducted at the village of Bougou-
la-Hameau in Mali, located ≈350 km south of the capital 
city of Bamako, near the border with Burkina Faso. The 
weekly control follow-up for each episode at Bougoula-
Hameau was 63 days, and the DHA/PPQ arm involved a 
total of 224 patients who were >6 months of age.

We conducted a pilot study analyzing the 96 recurrent 
infections associated with the shortest interepisode periods, 
assuming that this subgroup, among whom initiation of re-
current infection ranged from 23 to 65 days posttreatment 
(Figure), would be the most likely to include pfpm2 dupli-
cations. The study was reviewed and approved by the Eth-
ics Committee of the Faculty of Medicine, Pharmacy, and 
Odonto-Stomatology, University of Sciences, Techniques 
and Technology of Bamako.

We determined copy number by using a SYBR-
green–based quantitative PCR (ThermoFisher Scientific, 
Waltham, MA, USA) in a protocol modified from the one 
previously described by Witkowski et al (4). We used the 
P. falciparum β-tubulin gene as the internal nonduplicated 
standard and the 3D7 clone as a parallel 1 copy control. 
We ran the quantitative PCR thermal cycle at 98°C for 
3 min, followed by 45 cycles at 98°C for 15 s, 63°C for 
20 s, and 72°C for 20 s on a C1000 Thermal Cycler (Bio-
Rad, Marnes-la-Coquette, France) with the CFX96 Real-
Time System (Bio-Rad) detection system. We executed all 
procedures in triplicate. 

The analysis was conclusive in 65 of the 96 samples. 
We confirm the presence of 7 infections carrying 2 copies 
of pfpm2, representing ≈10% of the successfully analyzed 
infections. We did not identify any trend of earlier 
recurrence associated with this group of infections (Figure), 
a preliminarily observation that needs to be further explored 
in a larger sample set.

Our results clearly show that piperaquine resistance–
associated pfpm2 duplications are probably already 
frequent in Africa, which is of concern given the long 
half-life of piperaquine (>20 days). In high-transmission 
areas, this long period of decreasing drug exposure is likely 
to progressively select less sensitive, potentially pfpm2 
CNV–carrying parasites. Parallel studies conducted in 
these areas have not detected substantial altered parasite 
clearance dynamics or K13 mutations associated with 
artemisinin-derivative therapy (9,10), indicating that these 
pfpm2 duplications are emerging despite the efficacy of 
dihydroartemisinin. Further studies are urgently needed to 
clarify the clinical implications of piperaquine resistance 
and to monitor occurrence in other areas of high malaria 
transmission in Africa.
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Figure. Timeline distribution of Plasmodium falciparum pfpm2 copy number status during post–DHA/PPQ treatment followup for 
artemisinin combination therapy efficacy trials conducted by the West African Network for Antimalarial Drugs, Mali, Burkina Faso, and 
Guinea, October 2011–February 2016. Dark gray bar highlights the period (3 d) of treatment; lighter, longer gray bars represent PPQ 
average half-life (≈20 d). Circles represent recurrent infections; white circles indicate 1 pfpm2 copy, and gray circles indicate 2 pfpm2 
copies. DHA/PPQ, dihydroartemisinin/piperaquine; PPQ, piperaquine.


