
and α2,6-SA (9). The equilibrium dissociation constant for 
3′-Sialyl-N-acetyllactosamine is  12.2 (SD ± 0.7 nmol/L) 
and for 6′-Sialyl-N-acetyllactosamine is  43.3 (SD ± 2.8 
nmol/L) (Appendix). These values show that A/common 
gull/Saratov/1676/2018 has prevalent affinity for the avi-
an-like receptor with lower, but increased, affinity for the 
human-like receptor, compared with H5N1 strain A/rook/
Chany/32/2015 clade 2.3.2.1.C.

Analysis of homology of A/common gull/Sara-
tov/1676/2018 with H5N6 strains available from GISAID 
showed that all 8 gene segments clustered with human 
H5N6 strains isolated in southeast China in 2018. We noted 
99% homology with human strain A/Guangxi/32797/2018 
for all genes, a genetic similarity that raises the question 
of which pathway led to the spread of the virus. We be-
lieve A/common gull/Saratov/1676/2018 was transferred 
to eastern Russia through northeast Siberia, where HPAI 
H5N8 clade 2.3.4.4.A was detected in 2018 (10), the same 
pathway through which H5N8 virus was transferred from 
Southeast Asia to Europe. These viral pathogens could be 
spread by migratory birds over long distances along fly-
ways from southern China to southwestern Russia during a 
migration season. Our study indicates that emerging H5N6 
viruses are a potential threat to public health.
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Spotted fever is the main rickettsial disease in Brazil. We re-
port 12 cases of human parasitism by Amblyomma parkeri 
in the Atlantic rainforest, an area of Brazil to which spotted 
fever is endemic. Nine of the ticks were infected with Candi-
datus Rickettsia paranaensis.

Spotted fever is considered the main tickborne disease 
in South America (1). In Brazil, spotted fever has been 

reported since the 1920s and is known to show great clini-
cal diversity and ecoepidemiologic scenario complexity, 
involving Rickettsia rickettsii transmitted by Amblyomma 
sculptum and A. aureolatum ticks and Rickettsia parkeri 
strain Atlantic rainforest vectored by A. ovale ticks (2). 
However, several studies have identified different Rick-
ettsia species infecting a variety of tick species in Brazil, 
indicating the possibility of newly emerging spotted fever 
scenarios in Brazil (1–3).

In southern Brazil, in addition to the scenario already 
established for the Atlantic forest region, studies indicate 
the possibility of a unique cycle developing in the Pampa 
biome, in which R. parkeri sensu stricto might be associ-
ated with spotted fever cases involving an A. tigrinum tick 
vector (3). Accordingly, to expand the understanding of the 

spotted fever scenario in Brazil, we conducted a molecular 
study of Rickettsia in A. parkeri ticks as parasites of hu-
mans in an area of Brazil to which spotted fever is endemic.

During 2013–2018, in an investigation and surveillance 
of spotted fever cases in urban areas near Atlantic rainforest 
fragments in the Parana, Santa Catarina, and Rio Grande do 
Sul states in southern Brazil, we collected 12 tick nymphs 
parasitizing humans and morphologically identified these 
ticks as A. parkeri (4). We individually processed 11 speci-
mens for DNA extraction (5), subjected this DNA to PCR 
for molecular confirmation of tick species (6), and isolated 
gltA, htrA, ompA, and ompB gene fragments (Appendix 
Table, https://wwwnc.cdc.gov/EID/article/25/12/19-0988-
App1.pdf). We purified PCR products, sequenced them, 
and compared them with rickettsial sequences available in 
GenBank. We subjected concatenated aligned rickettsial 
sequences to maximum-likelihood analysis.

We identified A. parkeri ticks with containing rick-
ettsia in all 3 states studied. Nine samples amplified frag-
ments from >1 of the 4 rickettsia gene markers studied. All 
sequences for ompB and ompA gene fragments showed 
100% similarity with Candidatus Rickettsia paranaensis 
(GenBank accession nos. KX018050, JN126322, and 
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Figure. Concatenated phylogenetic analysis of rickettsia gene fragments detected in Amblyomma parkeri ticks in Brazil. Gene 
fragments gltA (1,013 bp), htrA (370 bp), ompA (494 bp), and ompB (822 bp) were inferred by maximum-likelihood analysis 
with the evolution model T92 + G (Tamura model). Values on the branches indicate bootstrap values (cutoff value 70%). Stars 
indicate sequences obtained in this study. GenBank accession numbers are given in parentheses. Scale bar indicates nucleotide 
substitutions per site.



JN126321). The htrA and gltA sequences had 100% simi-
larity to many of the spotted fever group rickettsia, in-
cluding Candidatus R. paranaensis (GenBank accession 
nos. KX018052 and JN126320). Phylogenetic analysis 
showed that bacteria detected in A. parkeri ticks from 
southern Brazil were in the same clade as Candidatus R. 
paranaensis (Figure).

The pathogenicity of Candidatus R. paranaensis is un-
known. However, Peckle et al. (7) placed it close to the 
Old World species R. africae and R. sibirica, both of which 
are proven pathogenic species (1). A. parkeri nymphs in-
fected by Candidatus R. paranaensis are not uncommon (7) 
and might have high frequencies of infection. Luz et al. 
(8) reported that 75% of passariform birds in southeastern 
Brazil were infected with ticks, a value similar to that ob-
tained in this study (81.81%) for humans in the southern 
region. Thus, circulation of Candidatus R. paranaensis in 
the Atlantic Forest biome might be closely associated with 
the presence of A. parkeri immature tick stages and pas-
seriform birds.

Although reports of human parasitism by tick species 
of the genus Amblyomma are increasing, A. parkeri ticks 
have been rarely reported from humans, although there 
are reports of parasitism in the Atlantic rainforest area of 
southeastern Brazil, including a high prevalence of this 
ixodid (nymphs) on humans in Rio Grande do Sul State 
(9,10). Although these reports were for a region to which 
spotted fever is endemic, there was no study of the associ-
ated rickettsia. However, our results show 12 humans para-
sitized by A. parkeri nymphs in the 3 states that comprise 
the southern region of Brazil, indicating that the parasitism 
of humans by such ticks is more common than that report-
ed. Examples of Candidatus R. paranaensis in A. parkeri 
parasitizing humans in an area to which spotted fever is 
endemic, with milder clinical characteristics (2), highlight 
the need to investigate the role of vector and rickettsia in 
spotted fever in southern Brazil. This investigation should 
help in formulating appropriate public health responses by 
existing surveillance programs.
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