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Highly pathogenic avian influenza (HPAI) A(H5N1) viruses
have been circulating since 2003 in Indonesia, with major
impacts on poultry health, severe economic losses, and
168 fatal laboratory-confirmed human cases. We per-
formed phylogenetic analysis on 39 full-genome H5N1 vi-
rus samples collected during outbreaks among poultry in
2015-2016 in West Java and compared them with recently
published sequences from Indonesia. Phylogenetic analy-
sis revealed that the hemagglutinin gene of all samples
belonged to 2 genetic groups in clade 2.3.2.1c. We also
observed these groups for the neuraminidase, nucleopro-
tein, polymerase, and polymerase basic 1 genes. Matrix,
nonstructural protein, and polymerase basic 2 genes of
some HPAI were most closely related to clade 2.1.3 in-
stead of clade 2.3.2.1¢, and a polymerase basic 2 gene
was most closely related to Eurasian low pathogenicity
avian influenza. Our results detected a total of 13 reassort-
ment types among HPAI in Indonesia, mostly in backyard
chickens in Indramayu.

Highly pathogenic avian influenza viruses (HPAI) con-
tinue to be a major global problem for both animal and
human health. Since the first outbreak of HPAI A(H5N1)
in Guangdong, China, in 1996, these viruses have caused
outbreaks in various species of birds globally. HPAI
HS5NI1 is endemic in multiple countries and causes a major
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impact on poultry health and severe economic losses. In
addition, >860 laboratory-confirmed human cases of HPAI
HSNI have been reported to the World Health Organization
(WHO). In Indonesia, 200 laboratory-confirmed human
cases of avian influenza A(H5N1) have been reported, with
a case-fatality rate of 84%, which is higher than the current
global case-fatality rate of 53% (/). The zoonotic potential
of HPAI is a global public health concern, particularly in
preventing a potential pandemic (2,3).

In Indonesia, HPAI H5N1 has been endemic in poultry
since 2003 and continues to cause major economic losses
to both poultry industry and backyard farms. The disease
has been reported in 32/34 provinces, resulting in the death
of millions of birds (4,5) and the closure of many farms
in high-incidence areas (6). While HPAI H5N1 viruses
continuously circulated among poultry in Indonesia during
2003-2010, the hemagglutinin (HA) genes evolved from
clade 2.1 into multiple subclades, according to the unified
nomenclature system for the HA gene of HPAI H5N1 virus
(7). In 2012, a new virus classified as clade 2.3.2.1 was de-
tected in ducks, suggesting a new incursion of HPAI H5N1
viruses in Indonesia from other parts of Southeast Asia (7—
9). Vaccination programs have been applied to control the
spread of HPAI H5N1 but have not prevented it because of
low vaccination coverage and use of unlicensed vaccines.
These problems have led to the emergence of antigenically
distinct HPAI H5N1 virus clades in Indonesia (/0). In ad-
dition to the continuous circulation of HPAI H5N1 viruses
in poultry, transmission to humans has been reported in In-
donesia since 2005 (/).

Clarifying the epidemiology of HPAI H5N1 requires
more intense monitoring of outbreaks of HPAI in Indone-
sia and performing genetic and phylogenetic analysis on
viruses detected during these outbreaks. However, recent
information on the genetic divergence of HA, and in par-
ticular on other gene segments, is very limited (8,//-13),
and samples are often collected in a nonsystematic way.
Therefore, the aim of this study was to perform genetic and
phylogenetic analysis on recent HPAI H5N1 viruses that
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were obtained from poultry during active searches for out-
breaks in West Java, a province of Indonesia. West Java
was selected for this study because it has a high poultry
density, multiple different farming systems and live-bird
markets, and several environmental components that all
form risk factors for HPAI H5N1 virus transmission. More-
over, because a high percentage of the land in this region
is paddy fields and water sources, free-ranging ducks and
chickens undermine the effectiveness of prevention and
control measures, resulting in the continuous circulation of
the virus (/4,15).

Materials and Methods

Sample Collection

During April 2015—October 2016, district animal health of-
ficers of the West Java Animal Health Authority collected
samples from birds in 6 districts of West Java Province:
Subang, Indramayu, Tasikmalaya, Purwakarta, Sukabumi,
and Bandung (Figure 1). The districts were chosen on the
basis of the history and reoccurrence of HPAI outbreaks.
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In addition, these districts have multiple sectors of poultry
farms using various production systems and a high density
of poultry farms that have >50 birds/farm (4,16).

The samples were collected after detection of clini-
cal signs in or increased mortality of birds. The criteria
for increased mortality was set at >5% of the population
in birds vaccinated against HSN1 and 10% in those un-
vaccinated for 2 consecutive days. When the criteria were
met, oropharyngeal and cloacal samples were collected
from 5 sick birds and pooled into viral transport medium
containing brain—heart infusion broth and antimicrobial
drugs according to European Union instructions (http://
extwprlegsl.fao.org/docs/pdf/eur65757.pdf). The speci-
mens were kept chilled and shipped by overnight courier
to the 2 collaborating veterinary laboratories, Disease In-
vestigation Center (DIC) Subang and West Java Animal
Health Laboratory Cikole.

Sample Screening

We tested the collected samples in veterinary laborato-
ries using a national protocol for influenza A screening

West Java

Bekasi

Karawang

Cirebon
Sumedang

Kuningan

Ciamis

Cianjur

Indonesia

North . [t
Sumatra <
West
West Kalimantan

Stratra Central

Jambi

South
Sumatra

Lampung i == = === L
H5N1 clade 2.1.3.2a 1 1
H5N1 clade 2.3.2.1c (A)

H5N1 clade 2.3.2.1c (B)

1 1
1-West Java’l
) Central

Kalimantan

Tasikmalaya

North
Kalimantan

East
Kalimantan

North
Sulawesi

Central
Sulawesi
t =

South Sulawesi Maluku

Kalimantan

South
Sulawesi

Figure 1. Locations of sampling areas and of different hemagglutinin (HA) clades in study of avian influenza A(H5N1) viruses circulating
in Indonesia, 2015-2016. A) West Java Province; B) location of province in Indonesia (box). Data were compiled from this study
and additional sequence data of Directorate General for Livestock Services, the Indonesian Ministry of Agriculture, and submitted to

GenBank (accession nos. EP11009273-463).
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developed from a real-time reverse transcription PCR (RT-
PCR) targeting the matrix gene. Specimens with a cycle
threshold value <30 were inactivated using binding buffer
of High Pure Viral RNA kit (Roche Applied Science, http://
www.roche.com), and transported to the Eijkman Institute
for Molecular Biology in Jakarta for Sanger sequencing.
Two additional HPAT H5N1—positive samples, collected
in 2016 and obtained from the Animal Health Laboratory
(AHL) Cikole of West Java, were also inactivated and in-
cluded in this study for Sanger sequencing.

Sequencing
At the Eijkman Institute, we rescreened the specimens
and extracted RNA in accordance with the protocol of the
manufacturer and synthesized cDNA by Invitrogen Su-
per Script III First-Strand Synthesis SuperMix (Thermo
Fisher Scientific, http://www.thermofisher.com) with
Unil2 primer (/7). On specimens that tested positive in
this PCR, we performed additional PCRs to amplify other
gene segments present in the samples. We performed am-
plification of the full genomes of HPAI H5N1 viruses us-
ing a 2-step RT-PCR TaKaRa Z-Taq DNA Polymerase
(Takara Bio, http://www.takarabio.com) or Toyobo KOD
FX Neo (Toyobo, http://www.toyobo-global.com) if the
genomes were not successfully amplified using the Ta-
kara product.

The primers used were primarily designed by Wa-
geningen Bioveterinary Research. We obtained ad-
ditional primer sequences from the Australian Animal

Avian Influenza A(H5N1) Viruses, Indonesia

Health Laboratory and from scientific literature (/7,18)
and applied them to unsuccessfully sequenced gene frag-
ments that could not be amplified by standard primers.
We purified the amplified PCR products with Roche
High Pure PCR Product Purification Kit (Roche) or
Zymoclean Gel DNA Recovery Kit (Zymo Research,
https://www.zymoresearch.com) for PCR products for
which gel separation was necessary, and subsequently
sequenced them using a BigDye Terminator v3.1 Cycle
Sequencing Kit in an ABI 3130 Genetic Analyzer (both
from Thermo Fisher).

Genetic and Phylogenetic Analysis

We assembled and edited sequences with Lasergene
SeqMan Pro version 12 (DNASTAR, http://www.
dnastar.com) and aligned them by using MUSCLE (/9).
We initially determined HA clade of sequenced HPAI
HS5NI1 viruses using the Highly Pathogenic HSN1 Clade
Classification Tool of the Influenza Research Database
(https://www.fludb.org) and confirmed results through
further phylogenetic analysis (20). We estimated phylo-
genetic inference using the maximum-likelihood method
with 1,000 bootstrap replicates (Figure 2; Appendix 1
Figure 1, https://wwwnc.cdc.gov/ElD/article/25/3/18-
0167-Appl.pdf). We chose the most suitable substitu-
tion rates and pattern model based on the lowest Akaike
information criterion for each alignment. Evolution-
ary distances were computed using average pairwise
distance (APD) between and within sequence groups.
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Figure 2. Number of samples in study of avian influenza A(H5N1) viruses circulating in Indonesia, 2015-2016, by district (A), time (B),
poultry type (C), poultry sector (D), and farm size (E) from which the complete HPAIV H5N1 genome could be obtained.
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Evolutionary analyses and APD were conducted in
MEGAG6 (21).

We aligned the sequences of HPAI H5N1 gene seg-
ments collected during this study with reference sequences
from GenBank (Appendix 1 Figures 1-8) using BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). We included
in the analysis sequences obtained from viruses detected
during other recent outbreaks in Indonesia (2014-2016).
These viruses had been collected via passive outbreak sur-
veillance by the Disease Investigation Centres (DIC) in
Medan, Sumatra; Wates, Central Java; and Denpasar, Bali,
under the Directorate General for Livestock and Animal
Health Services and the Indonesian Ministry of Agricul-
ture (DGLAHS-MoA). Viruses were submitted by DIC
Wates of DGLAHS-MoA to GenBank, and then down-
loaded to GISAID (https://www.gisaid.org; accession nos.
EPI11009273-463) (Appendix 2 Table 1, https://wwwnc.
cdc.gov/ElD/article/25/3/18-0167-App2.xls). For sequenc-
ing, we used mainly viruses from original material, as well
as some isolates obtained after 1-2 passages in embryo-
nated chicken eggs. We deduced reassortment events on
the basis of deviant location of sequences in maximum-
likelihood trees of different gene segments.

We used deduced HA amino acid sequences to calcu-
late estimated antigenic distances of viruses based on 27 aa
residues in HA, as described previously (22). We measured
the antigenic distances with 3 HPAI H5NI strains that are
or were routinely used to vaccinate poultry in Indonesia: A/
chicken/Legok/2003 (clade 2.1.1); A/chicken/West Java/
PWT-WI1J/2006 (clade 2.1.3.2); and A/duck/Sukoharjo/
BBVW-1428-9/2012 (clade 2.3.2.1c). We used a t-test to
estimate the significance of the comparison between the 2
averages of antigenic distances.

Results

Detection and Sequencing of HPAI Viruses

A total of 76 pooled samples were collected from various
districts of West Java, Indonesia (Figure 1). We observed
the highest number of outbreaks in Indramayu in February
2016. During April 2015-October 2016, a total of 56 of the
samples tested positive for influenza A virus by real-time
RT-PCR with a cycle threshold value <30. We obtained
the complete genome from 37 oropharyngeal samples
and 2 swab specimens of the 55 samples and used these
sequences in the analysis. Positive samples with complete
genomes were mostly collected in Indramayu (46.15%,
95% CI 30.5%—-61.8%) and Subang (38.46%, 95% CI
23.2%-53.7%); the highest peak came in February 2016
(41.3%, 95% CI 25.6%—56.5%), and most positive samples
came from backyard chickens (69.23%, 95% CI 54.74%—
83.71%). The positive samples were primarily from sector
4 (69.23%, 95% CI 52.4%—-83%), from farms with <100
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birds/farm (53.85%, 95% CI 37.2%-70%) (Figure 2). Se-
quences comprising the whole genome were submitted to
GISAID (Appendix 2 Table 1).

Phylogenetic Analysis of HPAI H5N1 Genes

Analysis of obtained hemagglutinin (HA) and neuramini-
dase (NA) nucleotide and deduced amino acid sequence
data confirmed that viruses in our samples were HPAI
H5N1 with polybasic cleavage motif (Q-R-E-R-R-R-K-
R-G-L-F) and (Q-R-E-K-R-R-K-R-G-L-F). Phylogenetic
analysis showed that the HA genes of the HPAI H5N1
viruses in our study samples all belong to clade 2.3.2.1c.
In-depth analysis revealed that Indonesia 2015-2016 HPAI
H5NI1 clade 2.3.2.1c¢ has evolved into 2 putative new sub-
groups, A and B. The APD between the 2 subgroups within
clade 2.3.2.1c was >1.5% (3.3% = 0.4%); the bootstrap
value was >60%; and the APDs within the 2 groups within
clade 2.3.2.1c were <1.5% (0.9% = 0.1% for subgroup A
and 1.9% = 0.2% for subgroup B). One sample collected by
DIC Medan in 2016 from Sumatra Island was identified as
clade 2.1.3.2a (Appendix 1 Figure 1).

We observed the evolution of clade 2.3.2.1c of Indo-
nesia 2015-2016 HPAI H5N1 viruses into putative new
subgroups (A and B) for the polymerase basic 1 (PB1),
polymerase (PA), nucleoprotein (NP), and neuraminidase
(NA) genes, as became apparent from comparing respec-
tive phylogenetic trees of these genes (Appendix 1 Figures
2-5). The APDs of the PB1, PA, NP, and NA genes were
computed, although APD for these genes has not been used
yet for HPAI nomenclature. The APD between the 2 differ-
ent subgroups A and B within clade 2.3.2.1c viruses was
2.3% +0.3% for PB1, 2.4% +0.3% for PA, 2.1% +0.3% for
NP, and 3.4% +0.3% for NA; and the APDs within the 2
different subgroups of clade 2.3.2.1c were 0.8% £0.1% (A)
and 1.6% +0.2% (B) for PB1, 0.7% +0.1% (A) and 1.3%
+0.1% (B) for PA, 0.6% +0.1% (A) and 1.1% +0.1% (B)
for NP, and 0.7% +0.1% (A) and 1.9% +0.2% (B) for NA.

We identified 4 different variants of PB2 in HPAI
H5NI1 cases from Indonesia in 2015-2016, whereas MP
and NS consisted of 3 variants. One of the 4 variants in the
PB2 gene of HPAI H5NI viruses collected by DIC from
poultry outbreaks in Central and East Java in 2016 was
similar to PB2 of LPAI from Asia (Appendix 1 Figures 1,
7, 8).

Detection of Possible Reassortments

Analysis of obtained sequence data by the maximum-
likelihood method revealed the presence of multiple reas-
sortments of HPAI HSN1 virus gene segments of differ-
ent viruses circulating in Indonesia, using viruses of clade
2.3.2.1c, 2.1.3.2a, and Asia LPAI as parent strains (Figure
3). Based on the complete genome sequences of 37 positive
samples, we identified the district with the most reassorted
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viruses as Indramayu (20.5%, CI 95% 9.3%—-36.5%). The
month with the largest proportion of infections was Feb-
ruary 2016 (18%, 95% CI 7.5%-33.5%), and the type of
poultry with the largest proportion of infections was back-
yard chickens (15.4%, 95% CI 5.9%-30.5%). We identi-
fied =18% (95% CI 7.5%—33.5%) of reassorted viruses in
poultry sector 4; 15.4% (95% CI 5.95%-30.5%) were in
farms with <100 birds/farm (Figure 3).

Antigenic Distance Based on Genetic Distance

It has been demonstrated recently that genetic distances in
27 selected amino acid residues of the HA of HPAI HS
viruses correlate with antigenic distances (22). These 27
positions correlate closely with antigenicity and are close
to receptor binding sites (23,24). We observed amino acid
changes in the HA of the HPAI H5N1 viruses analyzed in
our study at 19/27 selected residues: N72D, D97N, Q115H,
S129L, S133A, P136S/P136L, L138Q, S140N, P141S,
N154D/N154S, R162K, S163G/S163N/S163T, D183N,
E184G, A185G, T188I, K189R/K189M, R212K, M226l
(Appendix 2 Table 4).

Results show that the estimated average antigenic dis-
tance of HPAI H5N1 viruses from subgroup A was slightly
smaller than from subgroup B to the most recent seed vi-
rus vaccine, A/duck/Sukoharjo/BBVW-1428-9/2012. Not
surprisingly, these average antigenic distances were lower
than to older seed vaccine strains of different clades (A/
chicken/Legok/2003, A/chicken/West clade 2.1, and Java/
PWT-WI1J/2006 clade 2.1.3.2). In all cases, the distance
difference between subgroup A or B and the 3 seed vaccine
strains was significant (p<0.05) (Appendix 2 Tables 4, 5).
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Discussion

We performed genetic and phylogenetic analysis on 39 com-
plete genomes of HPAI HSN1 viruses obtained from recent
outbreaks in West Java, Indonesia. The results of genetic
analyses of the samples indicated that HSN1 clade 2.3.2.1¢c
viruses are currently circulating predominantly in West
Java and Sumatra. The finding of a single clade 2.1.3.2a
virus, however, showed that this clade is still present in In-
donesia. More systemic surveillance is required to confirm
the prevalence of HA clade 2.1.3.2a viruses in Sumatra and
Java. Of interest, we detected 2 new subgroups HA within
clade 2.3.2.1c. These subgroups are candidate subclades;
they share a common node, monophyletic grouping with
bootstraps values >60, and APD between groups of >1.5%
and within groups of <1.5%, fulfilling the criteria designed
by the World Health Organization/World Organisation for
Animal Health/Food and Agriculture Organization (WHO/
OIE/FAO) H5 Evolution Working Group (7).

The diversity we detected in the HA subgroups of
HPAI viruses in Indonesia in 2015-2016 we also detected
in gene segments PB1, PA, NP, and NA, as was apparent
by determination of the APD. However, although the APD
between the groups was >2%, not all bootstrap values were
>60. At the least, the calculated APD of PBI1, PA, NP, and
NA suggests that genetic variation of these genes is similar
to that in HA.

The antigenic distances we deduced of the differences
of 27 aa that determine antigenicity vaccination effective-
ness of West_Java/PWT-Wij/2006 vaccines are expected to
be lower against clade 2.3.2.1c than against clade 2.1.3.2a.
Whether immunity induced by routine vaccination practices
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actually did facilitate (25—28) the replacement of 2.1.3.2a
viruses by clade 2.3.2.1c after its incursion in Indonesia in
2012 needs further investigation. Whether vaccination also
played a role in the emergence of subgroup B viruses is less
likely; the difference in the antigenic distance between sub-
group B and the vaccine virus A/duck/Sukoharjo/BBVW-
128-9/2012, which came into use after 2012, is rather small
and only just significant. Additional studies of other vari-
ables that might have affected the evolution of HSN1 virus
in Indonesia, such as transmission efficiency of the viruses
in different hosts, are required to prove or reject a possible
role of vaccination. In all cases, the observed genetic varia-
tion combined with its effect on antigenicity illustrates the
need for continued intense surveillance and prompt genetic
characterization. Calculating antigenic distances based on
the 27 aa of HA could greatly speed up the process of seed
virus selection because serologic analyses, antigenic car-
tography, and experimental vaccination-challenge experi-
ments are time-consuming and costly processes. However,
such studies are still crucial to confirm the validity and reli-
ability of this antigenic distance method for seed selection.

We observed the evolution of clade 2.3.2.1c into 2
subgroups in 2 different locations. One subgroup within
this clade (A) was observed mostly in West Java, whereas
another subgroup (B) was seen in diverse regions of Indo-
nesia (Figure 1; Appendix 1). Additional studies are needed
to confirm that there are indeed geographic differences be-
tween subgroups A and B and to elucidate possible causes,
such as differences in vaccination strategies and differences
in trade connections (29).

We identified reassortment events in West Java, most-
ly in backyard chickens in Indramayu. The high poultry
density, the presence of different poultry types, and the
frequent contacts between poultry farms and between do-
mestic poultry and wild birds may have led to reassortment
in West Java (/4). A parallel study on contacts of different
poultry sectors revealed that backyard chicken farms have
the highest contact rate (30), which may have facilitated
reassortment in West Java. Of interest, a recent study de-
scribed reassortant HPAI H5N1 viruses in samples collect-
ed from live-bird markets associated with suspected human
HPAI H5N1 cases in Indonesia (/3). More intense surveil-
lance programs are required to confirm the prevalence and
distribution of the clade 2.1.3.2a and 2.3.2.1c subgroups
and its reassortments and to be able to unveil the transmis-
sion of HPAI from different sectors, vaccination practices,
and regions.

Reassortments between influenza viruses can only oc-
cur when a host cell is infected by >2 viruses with discrete
genomes and when mixing within the host cells produc-
es a hybrid genotype from segments of different parental
strains. Because such events are dependent on simultane-
ous infections with multiple viruses, reassortments are
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more likely to occur at hotspots such as live-bird markets
where different types of birds originating from many differ-
ent farms, and potentially infected with different viruses,
come together (29,37). Some computational methods have
recently been developed to identify a putative reassortment
event (32,33). In this study, the events were identified by
maximum-likelihood phylogeny and genetic distance-
based methods; we reconfirmed selected reassortments by
Graph Incompatibility based on Reassortment Finder using
Markov chain Monte Carlo computational methods (data
not shown).

Phylogenetic analysis of PB2, M, and NS indicated
reassortment between viruses circulating in Indonesia.
The detection of 3 different variants of M and NS, and 4
different variants of PB2 suggests that reassortment oc-
curs frequently in HPAI viruses in West Java, Indonesia.
Of interest, 1 variant of PB2 was highly similar to LPAI
from nearby countries: Malaysia (H5N2), Korea (H7N7,
H3N8), Japan (HIN1), and Mongolia (H7N1); viruses
that until recently had not been detected in Indonesia (317).
A similar PB2 and putative reassortants with other LPAI
viruses were recently reported (/3). These results suggest
that many more LPAI viruses are likely to circulate in In-
donesia but are not detected because active surveillance
in wild birds or poultry is not performed. Also, diagnos-
tic procedures that solely focus on the detection of HSN1
viruses may contribute to missing influenza viruses of
other subtypes.

The presence of multiple reassortants of HPAI viruses
should be an alert to the regional and international com-
munity to strengthen mitigation action plans to prevent the
further reassortment and genetic drift of the viruses. Pre-
venting virus transmission between poultry flocks, strin-
gent biosecurity measure in (wild) bird markets, and keep-
ing poultry separated from wild birds will help to prevent
introduction, adaptation, and reassortment of LPAI viruses
to a possibly novel zoonotic HPAI virus as currently ob-
served in China and other countries (/8,34,35).

Structured, active surveillance in combination with
genetic and phylogenetic analysis are urgently needed to
reveal these viruses’ mutations and potential zoonotic ef-
fects, as the viruses rapidly and continually evolve with
frequent reassortment (36). Also, adequate interventions at
live poultry markets, such as separate markets for different
poultry types with higher biosecurity and restructuring of
the poultry chain, are crucial to prevent further loss from
novel reassortant HPAT HSN1 viruses (29,37,38).
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Reassortments Among Avian Influenza
A(H5N1) Viruses Circulating in Indonesia,
2015-2016
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Appendix 1 Figure 1. Phylogenetic trees of HA segment of influenza A(H5N1) virus. Evolutionary history
was inferred using the maximum-likelihood method based on the GTR+G model (1). The tree with the
highest log likelihood is shown. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar represents number
of substitutions per site. Evolutionary analyses were conducted in MEGAG (2). Blue indicates subgroup B;

red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1.
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Appendix 1 Figure 2. Phylogenetic trees of PB1 segment of influenza A(H5N1) virus. Evolutionary
history was inferred using the maximum-likelihood method based on the GTR+G+I model (1). The tree
with the highest log likelihood is shown. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar
represents number of substitutions per site. Evolutionary analyses were conducted in MEGAG (2). Blue

indicates subgroup B; red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1;
pink, Eurasian LPAI viruses.
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Appendix 1Figure 3. Phylogenetic trees of PA segment of influenza A(H5N1) virus. Evolutionary history
was inferred using the maximum-likelihood method based on the GTR+G+I model (1). The tree with the
highest log likelihood is shown. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar represents number
of substitutions per site. Evolutionary analyses were conducted in MEGAG (2). Blue indicates subgroup B;
red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1.
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Appendix 1 Figure 4. Phylogenetic trees of NP segment of influenza A(H5N1) virus. Evolutionary history
was inferred using the maximum-likelihood method based on the GTR+G+I model (1). The tree with the
highest log likelihood is shown. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar represents number
of substitutions per site. Evolutionary analyses were conducted in MEGAG (2). Blue indicates subgroup B;

red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1.
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Appendix 1 Figure 5. Phylogenetic trees of NA segment of influenza A(H5N1) virus. Evolutionary history
was inferred using the maximum-likelihood method based on the GTR+G+l model (1). The tree with the
highest log likelihood is shown. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar represents number
of substitutions per site. Evolutionary analyses were conducted in MEGAG (2). Blue indicates subgroup B;

red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1.
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Appendix 1 Figure 6. Phylogenetic trees of PB2 segment of influenza A(H5N1) virus. Evolutionary
history was inferred using the maximume-likelihood method based on the GTR+G+| model (1). The tree
with the highest log likelihood is shown. The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar
represents number of substitutions per site. Evolutionary analyses were conducted in MEGAG6 (2). Blue
indicates subgroup B; red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1;

pink, Eurasian LPAI viruses.
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Appendix 1 Figure 7. Phylogenetic trees of MP segment of influenza A(H5N1) virus. Evolutionary history
was inferred using the maximum-likelihood method based on the GTR+G+I model (1). The tree with the
highest log likelihood is shown. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar represents number
of substitutions per site. Evolutionary analyses were conducted in MEGA®G (2). Blue indicates subgroup B;
red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1.
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Appendix 1 Figure 8. Phylogenetic trees of NS segment of influenza A(H5N1) virus. Evolutionary history
was inferred using the maximum-likelihood method based on the GTR+G+I model (1). The tree with the
highest log likelihood is shown. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the nodes. Scale bar represents number
of substitutions per site. Evolutionary analyses were conducted in MEGAG (2). Blue indicates subgroup B;

red, subgroup A; purple, strains of clade 2.3.2.1c; green, clade 2.1.3.2a H5N1,; pink, Eurasian LPAI
viruses.
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