This case illustrates the need to better define the geographic extent and modes of transmission of this debilitating disease so that primary control measures can be identified. In addition, health workers must be provided with the training and tools to diagnose and treat M. ulcerans. Research into a point-of-care diagnostic test is needed so that timely treatment can minimize disability and costs to the family.

Acknowledgments
Thanks to Emily Duecke, Sidy Ba, Carlos Bleck, and Teunella Wolters for their sharp clinical skills and therapeutic efforts on behalf of this patient.

About the Author
Ms. Turner is a family nurse practitioner living and working in Dakar, Senegal. Her background includes trauma and pediatric primary care in high-income and low-income countries.

References
1. Sakyi SA, Aboagye SY, Othere ID, Yeboah-Manu D. Clinical and labora
2. Guarner J. Buruli ulcer. Review of a neglected skin mycobacterial
3. World Health Organization. Treatment of Mycobacterium ulcerans
disease (Buruli ulcer). Guidance for health workers. Geneva: The Organiza
4. Ezzedine K, Pistone T, Guir V, Malvy D. Painful Buruli ulcer in a
5. Bessis D, Kempf M, Marsollier L. Mycobacterium ulcerans
disease (Buruli ulcer) in Mali: a new potential African endemic
6. Ezzedine K, Pistone T, Cottin J, Marsollier L, Guir V,
Malvy D. Buruli ulcer in long-term traveler to Senegal.
eid1501.080123
7. Merritt RW, Walker ED, Small PLC, Wallace JR, Johnson PDR,
8. Jacobsen KH, Padgett JJ. Risk factors for Mycobacterium ulcerans
9. Trubiano JA, Lavender CJ, Fyfe JAM, Bittmann S, Johnson PDR.
The incubation period of Buruli ulcer (Mycobacterium ulcerans
Sarfo FS, et al. Effectiveness of routine BCG vaccination on Buruli ulcer
disease: a case-control study in the Democratic Republic of

Address for correspondence: Grace Anne Turner, 1609 Watkins St, Lake
Charles, LA 70601, USA; email: gaturner@gmail.com

Management of Patients with Candida auris Fungemia at Community Hospital, Brooklyn, New York, USA, 2016–2018

Jenny YeiSol Park,2 Nicole Bradley,3 Steven Brooks, Sibte Burney, Chanie Wassner

DOI: https://doi.org/10.3201/eid2503.180927

Candida auris is an emerging fungus that can cause invasive infections. It is associated with high mortality rates and resistance to multiple classes of antifungal drugs and is difficult to identify with standard laboratory methods. We describe the management and outcomes of 9 patients with C. auris fungemia in Brooklyn, New York, USA.

Candida auris is an emerging fungus that can cause invasive infections associated with high mortality rates and is often resistant to multiple classes of antifungal drugs. Risk factors for infection include nursing home exposure; invasive devices, such as tracheostomy tubes or percutaneous endoscopic gastrostomy tubes; immunocompromised status; and use of broad-spectrum antimicrobial drugs (1). On the basis of limited data available, echinocandins are recommended as initial therapy for C. auris infection (2). We review the management of 9 case-patients who had C. auris fungemia at a 300-bed community hospital, attached to a 450-bed nursing home, in Brooklyn, NY, USA. There have been 9 occurrences of C. auris fungemia at this institution since 2016.

Our case series demonstrates the complex patient population at risk for invasive infection with C. auris. Patients infected were generally >70 years of age and had multiple chronic concurrent conditions (Appendix Table, https://wwwnc.cdc.gov/EID/article/25/3/18-0927-App1.pdf). Most patients came from nursing homes, and more than half had invasive devices, such as tracheostomies or...
percutaneous endoscopic gastrostomy tubes, placing them at high risk for infection at baseline.

In addition, each patient had a recent history of broad-spectrum antimicrobial drug use; many had concomitant resistant organisms isolated and received concomitant antimicrobial drug therapy during their C. auris treatment course. The most common antimicrobial drugs used were meropenem, polymyxin B, and vancomycin. Common bacteria isolated were Acinetobacter sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Four patients were admitted to the medical intensive care unit; 2 had prolonged stays in the medical intensive care unit before development of candidemia.

The time from hospitalization to initial infection with C. auris varied among the patients. Approximately 60% of the patients came to the hospital with positive blood cultures on day 1, and fungemia developed in the remaining patients after prolonged hospitalization. Most patients had documented clearance of their blood cultures within 3–5 days of initial isolation. However, 1 patient had a second episode of C. auris fungemia several weeks after he was initially given treatment and documented to have clearance of blood cultures.

All patients were given micafungin as first-line therapy for an average duration of 22 days. The most common dose used was 100 mg/day of intravenous micafungin. Two of the 9 patients required liposomal amphotericin B after failing to respond to micafungin therapy. Both of these patients remained persistently febrile while receiving micafungin monotherapy; 1 was the patient with 2 episodes of C. auris fungemia. The average duration of amphotericin B was 19 days. The in-hospital mortality rate was 22%. Of the 7 patients who were discharged, 43% were discharged to a palliative care service. The average duration of hospitalization for these patients was 65 days.

Limited information is available on interpretation of MIC data for C. auris because the Clinical Laboratory Standards Institute (https://clsi.org) does not have breakpoints specific for C. auris. Antifungal susceptibility data were determined for each of the patients included in this case series (Appendix Figure). All antifungal susceptibility tests were performed by the Wadsworth Laboratory, the New York State Department of Health Reference Laboratory (https://www.wadsworth.org). Most susceptibility information was not available throughout the course of treatment. Given difficult identification of the organism by using standard laboratory techniques, timely identification and antimicrobial susceptibility information continues to be a challenge when managing patients with invasive C. auris (3).

All isolates were markedly resistant to fluconazole, and ≈40% were resistant to liposomal amphotericin B (Appendix Figure). This second finding is of particular concern because liposomal amphotericin B is the recommended second-line agent for management of C. auris in the setting of micafungin failure. On the basis of the resistance patterns at this hospital, patients who failed monotherapy with micafungin had liposomal amphotherin B added rather than switching therapy completely.

We encourage clinicians treating C. auris infections to consider combination therapy with micafungin plus liposomal amphotericin B in patients who fail monotherapy with micafungin. Laboratory limitations mean that timely identification and susceptibility testing of C. auris might not always be possible, and clinicians might often have to defer to local or national epidemiology trends to make the most up-to-date decisions. It is essential to notify the department of health of new cases of infection with C. auris as soon as possible and to educate healthcare personnel to help minimize spread. Clinicians should focus on identifying and minimizing risk factors for acquisition of C. auris and prevention of spread through enhanced infection control procedures.

About the Author
At the time of this study, Dr. Park was a pharmacy resident in the Department of Pharmacy, Kingsbrook Jewish Medical Center, Brooklyn, NY. She is currently an infectious disease resident at the State University of New York Downstate Medical Center, Brooklyn, NY. Her primary research interest is assessing the appropriate use of antimicrobial drugs and associated long-term outcomes.

References

Address for correspondence: Jenny YeiSol Park, Department of Pharmacy, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; email: j.park0405@gmail.com