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Using Big Data to Monitor the Introduction 
and Spread of Chikungunya, Europe, 2017 

Appendix 1 

Epidemic Intelligence Data 

We analyzed the 2 outbreak zones in the Var department of France (15 confirmed and 2 

probable cases) and around the cities of Anzio and Rome in the Lazio region of central Italy (206 

confirmed cases) and 74 confirmed cases in the Calabria region in south Italy (Appendix 3, 

https://wwwnc.cdc.gov/EID/article/25/6/18-0138-App3.pdf) (1–4). The disease vector Ae. 

albopictus mosquito is well established in all outbreak regions (5). Worldwide monthly 

chikungunya outbreak reports were compiled by the Epidemic Intelligence team at the European 

Centre for Disease Prevention and Control (Appendix 3) (6). We mapped and visualized the 

passenger volume of outbound flights to Europe from areas with chikungunya activity by month 

for March, April, May, and June 2017. 

Air Passenger Volume 

We analyzed anonymized flight itinerary data obtained from the IATA Market 

Intelligence Services and calculated the monthly volume of air passenger-journeys in 2016 (latest 

data available; presumed to be similar to 2017) from worldwide airports in areas with 

chikungunya virus active transmission to a final destination in Europe, by using a previously 

described method (7) (Appendix 3). The distribution of the number of passenger-journeys 

arriving into Europe from airports located in areas with active chikungunya virus transmission 

was then overlaid with European vector surveillance data compiled by the European Centre for 

Disease Prevention and Control (VectorNet, https://vectornet.ecdc.europa.eu) for Ae. albopictus 

mosquitoes by using ESRI ArcGIS (5). 
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Twitter Data 

We developed a mining algorithm and collected Tweets by using the Twitter Streaming 

Application Programming Interface (https://developer.twitter.com). Although the tweets 

collected from the API represent only 1% of the total Tweeter feed, when geographic boundary 

boxes are used for data collection it provides a high representation of the overall geo-located 

activity on Twitter (8). We filtered the collected tweets based on location by using geocodes, and 

we extracted only those originating from the study area in July, August, and up to September 19, 

2017. We longitudinally analyzed 8,120,417 Tweets. When Tweets from the same users could be 

followed by geographic coordinates, we obtained users’ individual files. We analyzed 

unidirectional mobility of Twitter users by estimating the frequency of a user being observed in a 

specific geographic department within the study area and later being observed in any other 

department within the same month. To compute a rate, we aggregated the total number of 

movements in a month between any 2 departments and divided this by the total movement across 

all the departments. The range of all between-department mobility values was 0–1 and added up 

to 1 when summarized across the departments for inbound and outbound movements. We 

derived this quantity as a proxy for mobility proximity between any 2 departments and computed 

it for each month. 

Vectorial Capacity 

To estimate seasonal variability in the ability of Ae. albopictus mosquitoes to transmit 

chikungunya virus, we modified our previously established climate dependent vectorial capacity 

arbovirus models (9,10). The model uses temperature and diurnal temperature range to estimate 

the epidemic potential of an outbreak. Theoretically, vectorial capacity is related to R0. More 

exactly, the R0 is a function of vectorial capacity (VC) and duration of viremia in humans (Th), 

that is R0 = VC × Th. Vectorial capacity is a function of vector competence, vector lifespan, and 

extrinsic incubation period (11) and is defined mathematically in Appendix 3. 

The 4 vector-related parameters in the vectorial capacity are 1) average vector biting rate, 

a; 2) the product of the probability of vector infection (bmi) and transmission per bite (bmt), bm; 3) 

extrinsic incubation period, n (i.e., the interval between the acquisition of a pathogen by a vector 
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and the vector’s ability to then transmit the pathogen to another susceptible host); and 4) vector 

mortality rate, μm ; and 4, female vector-to-human population ratio, m. 

The effect of temperature on the ability of Ae. albopictus mosquitoes to transmit 

chikungunya virus has not been well studied. However, μm and a in relation to temperature have 

been described for Ae. albopictus mosquitoes. We assumed that n, bm would have a dependence 

on temperature for chikungunya virus transmission similar to that for dengue virus, although we 

found evidence to support that it can be slightly lower at around 90% (11–13) and that n is 

shorter, peaking at around 8 instead of 10 days (11–13). Similar to a previous study (9), m was 

assumed to be proportional to its temperature-dependent survival curve. Parameter relationships 

used in the analysis are provided in Appendix 1 Figure. 

Climate Data 

We used data from the Climate Research Unit of East Anglia University (14) to estimate 

the average vectorial capacity for July, August, September, and October during 1996–2015. To 

describe the effect of warmer than usual temperature, we increased the average monthly 

temperature to its 75th percentile value for each month and recalculated the vectorial capacity. 

The Climate Research Unit data, originally provided in 0.5° × 0.5° grids by latitude and 

longitude, were resampled to fit into a grid of 0.01° to better align with the geographic 

departments of the study area. 
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Appendix 1 Figure. The relationship of vector-related parameters to temperature (°C), describing the 

ability of Aedes albopictus to transmit chikungunya virus. 
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