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With regard to fully harvesting the potential of big data, pub-
lic health lags behind other fields. To determine this poten-
tial, we applied big data (air passenger volume from interna-
tional areas with active chikungunya transmission, Twitter
data, and vectorial capacity estimates of Aedes albopictus
mosquitoes) to the 2017 chikungunya outbreaks in Europe
to assess the risks for virus transmission, virus importa-
tion, and short-range dispersion from the outbreak foci. We
found that indicators based on voluminous and velocious
data can help identify virus dispersion from outbreak foci
and that vector abundance and vectorial capacity estimates
can provide information on local climate suitability for mos-
quitoborne outbreaks. In contrast, more established indica-
tors based on Wikipedia and Google Trends search strings
were less timely. We found that a combination of novel and
disparate datasets can be used in real time to prevent and
control emerging and reemerging infectious diseases.

Many sectors of society have taken full advantage of
new opportunities provided by big data, but public
health has not (/). Although electronic health records have
long been used in surveillance, novel applications of big
data are rare. Internet search query data from Google or
Wikipedia have been applied to anticipate influenza epi-
demics but are hampered by several limitations, including
specificity and granularity (2—4). More recently, crowd-
sourcing of symptoms through emails, text messages, or
tweets has been explored, and outbreaks have been tracked
by scanning high-volume surveillance systems (5,6). How-
ever, when it comes to fully harvesting the potential of big
data, public health still lags behind other fields. Using chi-
kungunya as a case study, we illustrate how big data can
help tackle emerging infectious diseases through preven-
tion, detection, and response.
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A key driver of the emergence and spread of vec-
torborne diseases is human mobility (7—70), yet little is
known about the epidemiologic consequences of mobil-
ity patterns at different spatial scales within the context
of vectorborne diseases. A main obstacle to studying the
complex interactions between human hosts, pathogens,
and vectors has been the limited availability of spatio-
temporal datasets for analyzing human mobility patterns.
Prior research relied on low-resolution mobile phone re-
cords, such as call and messaging logs from mobile phone
networks (//—13), for which biases were notable (/4,15).
Furthermore, use of mobile phone data for tracking human
mobility is likely to be fraught with privacy concerns and
data access restrictions (/5).

Recently, social media has emerged as an alternative
source of real-time, high-resolution geospatial data on a
large scale (/,15). Use of this unique aspect of publicly
available social media data to study the human dimensions
of the introduction and spread of emerging infectious dis-
eases has not been explored to its fullest extent. In areas
where risk for virus importation and onward transmission
is heightened, such knowledge can inform outbreak pre-
paredness and response planning by pinpointing receptive
areas where proactive countermeasures should be imple-
mented in a timely fashion (/6,77).

The impediments to using big data in public health are
not only the size of the databases but also the complexity
of their processing. The challenges include 3 main dimen-
sions: volume, velocity, and variety (/8—20). Volume calls
for statistical sampling; velocity, for instant access to near
real-time transaction data; and variety, for management of
nonaligned data structures. We illustrate how big data can
be used to monitor the introduction and spread of the 2017
chikungunya outbreak in Europe by tackling these chal-
lenges (18-20).

To assess risk for virus importation from international
areas with active chikungunya transmission, we extracted air
passenger volume from large-scale aviation data. To quantify
the risk for short-range dispersion (defined as the potential for
onward transmission and spread of chikungunya virus from
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the initial outbreak foci to other areas during transmission
season), we used a mining algorithm to process quasi-real-
time, geolocated Twitter activity data and computed mobility
patterns of users. We have previously shown that mobility
data from Twitter users is predictive of disease spread (27).
We then estimated the seasonal vectorial capacity of Aedes
albopictus mosquitoes to transmit chikungunya virus and
linked it with human mobility patterns. We further comple-
mented these data with Internet and information search ac-
tivities related to chikungunya infection, vectors, and clinical
signs and symptoms collected from Wikipedia and Google
Trends. Last, we estimated the empirical basic reproduction
number (R ) from the outbreaks and compared these numbers
with our model predictions of epidemic potential based on
climate conditions. More detail on our methods is provided
in Appendix | (https://wwwnc.cdc.gov/EID/article/25/6/18-
0138-Appl.pdf).

Climate Suitability: Vectorial Capacity

The vectorial capacity of Ae. albopictus mosquitoes to
transmit chikungunya virus in areas of Europe where the
vector is established (/7), such as the outbreak zones in
France and Italy, was estimated to be high in July and
August but lower in September and October. Estimates
of suitability were low in October for most areas, except
those in southern Italy and Greece and southeastern Spain
(Figure 1). Overall, warmer than average temperatures led
to a substantial increase in vectorial capacity during the
study period (June—October 2017) (Appendix 2 Figure 1,

July

https://wwwnc.cde.gov/EID/article/25/6/18-0138-App2.
pdf). Using empirical data from the outbreaks in Italy
(22), we estimated R to be 2.28 (95% CI 2.01-2.59) for
the Anzio region, 3.54 (95% CI 2.62—4.97) for the Rome
region, and 3.11 (95% CI 2.16-4.79) for the Calabria re-
gion (Figure 2).

Long-Range Importation: Air Passenger Volume

On average, ~50,000 air passenger-journeys (1 passen-
ger flight, including all legs of travel) were taken each
month from areas with active chikungunya transmission
worldwide to the outbreak zones (Figure 3). Specifically,
in August, 56,300 passengers from outbreak zones were
estimated to arrive in Rome, 6,484 in Nice, and 5,629 in
Marseille. The passenger-journey volume into Europe
when the outbreak started in June is shown in Appendix
2 Figure 2. The countries with the highest number of de-
parting passengers in August were Thailand (352,332 pas-
sengers), Brazil (255,439 passengers), and India (301,298
passengers). According to molecular epidemiology, the
genome sequence of a chikungunya virus isolate from the
Lazio region of Italy revealed the East/Central/South Af-
rican lineage, Indian Ocean sublineage, which is similar
to that of recent sequences from Pakistan and India (23).
We also extracted air passenger-journey data for flights
from the outbreak zones in southeastern France and cen-
tral Italy to other areas in Europe (Figure 3). The top 5
destinations with the highest volume were the larger met-
ropolitan areas of Europe, most of which were outside

Vectorial
capacity

0.76
0.50

0.25

Figure 1. Vectorial capacity estimates based on average temperature conditions in Europe with stable populations of Aedes albopictus
mosquitoes around chikungunya outbreak zones, Italy and France, July—October 2017. Heavy outlines indicate the outbreak areas. The
vectorial capacity translates to an average basic reproduction number in the range of 2—3 in Anzio and Rome and in the range of 3—4 in
Calabria during the months of July and August for an infectious period of 4 days.
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Figure 2. Notified chikungunya
cases in the Anzio (A), Rome
(B), and Calabria (C) regions
and basic reproduction number
(R,) estimates of outbreaks,
June—October 2017, Italy.

b 0

Jull Jull5 Augl Augl5 Sepl Sep1l5 Octl Oct15 Nov1l

Onset date
B .
(%]
()]
(%))
8 10+
©
'CIJ
E 5]
e i
1! | ol I
Jull Jull5 Augl Augl5 Sepl Sep1l5 Octl Oct15 Nov1l
Onset date
C .
(%]
(]
(%]
38 101
©
'CIJ
T 57
2 L
1! S [
Jull Jull5 Augl Augl5 Sepl Sep1l5 Octl Oct15 Nov1l

Onset date

the boundaries of areas where the vector is known to be
present (Figure 4). However, high flight connectivity was
observed from the outbreak zones to Barcelona (Spain)
and Catania and Palermo (Italy).

Short-Range Dispersion: Geocoded Tweets

The spatiotemporal analysis of geocoded Twitter data
showed strong human mobility from Lazio (Figure 4) and
the Var department in France (Appendix 2 Figure 3) to-
ward several larger cities where Ae. albopictus mosquitoes
are present. The top 10 estimates of mobility out of the 2
outbreak zones of Var and Lazio showed the strongest pat-
tern for potential dispersion of chikungunya virus not only
into the areas geographically close to the outbreak zones
but also to several relatively large cities in Italy, France,
and Spain (Table). The monthly mobility patterns during
the study period varied between months; for example, the
vacation month of August showed a stronger mobility pat-
tern out of Var to areas not in direct connectivity, most no-
tably to Rome (Appendix 2 Figure 4). When we contrasted
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the mobility proximities between the 2 outbreak zones, we
observed the highest proximities within countries (Figure
4; Appendix 2 Figure 3). Although the Var and Lazio out-
break zones experienced high mobility proximity to Bar-
celona, Lazio was also highly connected to southern Italy
(e.g., Catania and Palermo), in close proximity to the chi-
kungunya outbreak in the Calabria area, which was also
observed in the International Air Transport Association
(IATA) flight passenger data (Figures 3, 4). In Italy, cases
were first notified in Anzio at the end of June, followed
by notifications in Rome later in July, and in Calabria in
early August in order of temporal appearance (Figure 2).
In our mobility analysis, we identified the mobility links to
all outbreak regions (Figure 4), with the exception of the
Emilia-Romagna region, although the region neighboring
Emilia-Romagna was positive in our analysis. The mobility
patterns correlated more strongly to the outbreak regions in
July and August.

A closer look at the Lazio outbreak zone in Italy re-
vealed strong connectivity between Anzio (where the first
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Figure 3. Incoming passengers from chikungunya active transmission areas and outgoing passengers to other airports in Europe from
Rome (FCO), Marseille (MRS), and Nice (NCE) airports, August 2017. The stable vector presence area is highlighted in yellow.

cases in Italy were confirmed) and Rome (where a higher
number of cases were notified) (Figure 5). We compiled the
top 10 mobility proximity areas from the outbreak zones
of Anzio and Rome in August and September (Table). Al-
though the highest mobility proximity from Anzio was to
Rome in August and September, the mobility proximity
from Rome to Anzio was also found among the top 10 des-
tinations. Overall, Rome had higher connectivity to many
more areas than Anzio.

Synergistic Effects: Human Mobility and
Transmission Suitability

We derived risk maps for autochthonous chikungunya
transmission by combining the vectorial capacity and
mobility proximity estimates for the Lazio region in Italy
and Var department in France for August—October 2017
(Appendix 2 Figure 4). The areas at risk because of the
outbreak in Var were identified to be located along the
French and northern Spanish Mediterranean coastlines,
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Mallorca, and Rome in August (Appendix 2 Figure 4);
the risk regions for the Lazio outbreak in August included
large parts of Italy as well as areas in France, Spain, and
Greece (Figure 6). In general, the size of the area at risk
contracted in September and more so in October because
of less favorable climate conditions, except in the most
southern region of Italy (Figure 6), such as the Calabria
region, where the outbreak also empirically continued
longer in the fall (Figure 2).

In the Lazio region, an analysis of the combination
of vectorial capacity (Appendix 2 Figure 5) and mobility
proximity revealed a higher transmission potential in Au-
gust (Appendix 2 Figure 6), with implications for targeting
surveillance and outbreak control activities to this region.
The largest area of risk for spread from Anzio was Rome,
but the risk for spread from Rome was more widespread
in the region (Appendix 2 Figures 6, 7). The areas at risk
for spread in the Lazio region differed during August com-
pared with September and October.

Emerging Infectious Diseases « www.cdc.gov/eid « Vol. 25, No. 6, June 2019
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Figure 4. MP estimates from the
Lazio region, Italy, to areas in
Europe with stable populations of
Aedes albopictus mosquitoes, July—
September 2017. Heavy outlines
indicate the chikungunya outbreak
areas. MP, mobility proximity.
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Wikipedia and Google Trend Indicators

For the outbreaks in Italy, several pathogen and vector-
related Wikipedia and Google Trend search pattern
anomalies are illustrated (Appendix 2 Figure 8). The
peaks in these abnormalities coincided with the peak of
the outbreak and therefore are not useful for early detec-
tion and response activities. Detailed information about
Wikipedia and Google Trend indicators are provided in

Emerging Infectious Diseases * www.cdc.gov/eid ¢ Vol. 25, No. 6, June 2019

Appendix 3 (https://wwwnec.cdc.gov/EID/article/25/6/18-
0138-App3.pdf).

Big Data and Emerging Infectious Diseases

In light of the arrival and explosive expansion of chi-
kungunya in the Americas in 2013 through Ae. aegypti
moquitoes (24), big data offer the opportunity to monitor
the introduction and spread of chikungunya in Europe. An
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Table. Top 10 areas where mobility proximity to the 2 chikungunya outbreak zones was highest, Europe, August 2017

Southern Europe Lazio region
Rank From Var department, France From Lazio region, ltaly From Anzio From Rome
1 Alpes-Maritimes Florence Roma Vatican
2 Bouches-du-Rhéne Milano Nettuno Fiumicino
3 Torino Napoli Sabaudia Sabaudia
4 Paris Venezia Ardea Civitavecchia
5 Alpes-de-Haute-Provence Paris Civitavecchia Santa Marinella
6 Rhone Barcelona Pomezia Tivoli
7 Hérault Perugia Aprilia Anzio
8 Vaucluse Latina Cisterna Di Latina Ladispoli
9 Barcelona Siena Fondi Pomezia
10 Baeleares Salerno Amatrice Valmontone

outbreak can be divided, broadly speaking, into 2 distinct
phases. The first phase is importation of the virus via a vi-
remic person into a virus-naive population. For this phase,
we used big data (volume) to estimate air passenger-jour-
neys from areas with active chikungunya transmission as
a measure of the force of introduction of the virus into the
outbreak zones in Europe. To identify areas with onward
transmission risk, we also considered the volume of air
passengers leaving these outbreak zones. For the second
phase, the establishment of autochthonous transmission in
Europe is a function of virus importation, population den-
sity, vector activity, climate conditions, exposure patterns,
and several other factors that are more difficult to quantify
(17). Our study addressed some of these epidemiologic
challenges by using big data. Rather than a Twitter con-
tent analysis, which has been performed for several out-
breaks (25-28), we used near—real-time geocoded Twitter
data (velocity) to quantify human mobility patterns and
disentangled connectivity between populations. Mobility
estimates also reflect population density and indirectly
take into account exposure patterns because such popula-
tions on the move are occasionally susceptible to exposure
and are also a source of exposure. The ecology of the virus
and the human-vector transmission cycle were captured
by vectorial capacity (variety), which quantified transmis-
sion risk on the basis of climate conditions. Thus, we were
able to quantify the trajectory of an arbovirus outbreak by
dissecting and better understanding its phases.

Our analysis of big data revealed distinct mobility pat-
terns between the outbreak zones in France and Italy, be-
tween Rome and Anzio, and between Rome and most of
the local outbreak clusters in Italy. However, the potential
effects of these mobility patterns on local spread need to
be confirmed epidemiologically by phylogenetic analyses.
Although the sensitivity of our risk maps based on mobility
and climate data to identify areas at risk for virus spread
was good, the specificity needs to be further improved, for
example, by including local contextual factors such as land
use and vector activity. Wikipedia page hits and Google
Trends have been proposed as resources for disease sur-
veillance and outbreak detection. However, our analysis
demonstrates that these sources seemed to mainly indicate
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public awareness of the chikungunya outbreaks as they
peaked. For such reasons, they seem to be of little use for
early response.

The combination of short-distance air passenger-jour-
neys (within Europe, as opposed to overseas) and geocoded
Twitter data lends itself to cross-validation. We found that
the 2 approaches consistently identified several cities with
established vector populations at a heightened risk for vi-
rus importation, reflecting the potential for spread between
countries and cities in Europe. Some of these regions had
previously encountered autochthonous transmission (29).

The R, estimates, which were derived by using epi-
demiologic data, were in accordance with the vectorial
capacity predictions for the outbreak zones based on local
climate conditions. Based on the vectorial capacity, R can
be derived by multiplication with the infectious period. For
chikungunya, an infectious period of 3—7 days was reported
(30). The vectorial capacity of ~0.7 would give rise to an
R, of =2-3. This range is within that which we observed
in the Rome and Anzio regions in July and August, but
the vectorial capacity was estimated to be higher (=0.8) in
the Calabria region, translating into an R of just over 3-4,
which is in agreement with the epidemiologic analysis of
the outbreak data (Figure 2).

Although our mobility analysis showed that the local
mobility from Var was considerable, no autochthonous
chikungunya cases were reported from other identified
risk regions along the Mediterranean coast of France and
in northern Spain. However, the vectorial capacity of Ae.
albopictus mosquitoes to transmit the virus is lower in Var
than in Lazio, which may explain this discrepancy. Previ-
ous studies assessing the risk for local outbreaks after out-
breaks outside of Europe found that inbound flight traveler
frequencies correlated strikingly well with local reports of
virus importation frequencies into Europe (9). However,
most of these studies evaluated these risks independently
and did not attempt to estimate the combined risk for virus
importation and climate suitability (37,32). Moreover, they
did not assess local dispersion patterns from airports or out-
break areas. We analyzed big data for long- and short-dis-
tance mobility. A major strength of this big data approach
is the near real-time availability of mobility patterns based

Emerging Infectious Diseases « www.cdc.gov/eid « Vol. 25, No. 6, June 2019
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Figure 5. Estimated areas of
risk for chikungunya spread from
the outbreak areas of Anzio and
Rome in the Lazio region, Italy,
based on combined VC and

MP estimates, August—October
2017. Heavy outlines indicate
the outbreak areas. MP, mobility
proximity; VC, vectorial capacity.
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on social media, which are timelier and more accessible
and less costly than air passenger data available from com-
mercial providers, such as the IATA. This approach can
identify areas of heightened mobility that are potentially
at risk for onward transmission, as we have shown in this
analysis. Geocoded Twitter data can be a good proxy for
human mobility (/5), but prior research did not explore
how such data can be a timely resource for preparedness
and response to infectious disease outbreaks.

Emerging Infectious Diseases * www.cdc.gov/eid ¢ Vol. 25, No. 6, June 2019

Similar to others who have used IATA and Twitter
data in their studies, we found these novel data sources to
be reliable and useful. However, we note that Twitter data
can potentially be biased because Twitter users may repre-
sent a select population whose mobility patterns differ from
those of the general population; more specifically, they
represent a population of Twitter users who have allowed
Twitter to follow their geolocations. Future studies need to
validate the use of social media data in such applications.
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for chikungunya spread from the
outbreak areas in Lazio region,
Italy, based on MP estimates,
August—September 2017. A)
Anzio; B) Rome. Circles indicate
number of reported cases. MP,
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These methods are an improvement over mobile telephone
tracking data because they do not rely on a single provider
network and are a less costly data source to acquire.

Seasonal weather forecasts may have provided better
input into the assessment of vectorial capacity, specifically
for the fall of 2017. Moreover, autochthonous transmission
risk may also be related to local proliferation of vectors and
local environmental, social, and behavioral characteristics,
such as awareness about the symptoms of chikungunya
(Appendix 3). Such factors have been found to be associ-
ated with the local transmission risk for dengue (33). Last,
because of the paucity and underreporting of chikungunya
cases, we may have potentially underestimated the passen-
ger volume from active transmission areas in Africa.

This study illustrates the potential value of using big
data (1/8—-20) to pinpoint areas at risk for the introduction
and dispersion of emerging infectious diseases. The analy-
sis identified that the areas at greatest risk were those in
close proximity to the original outbreaks and several larger
metropolitan areas. The trajectory and sustained spread of
emerging infectious diseases can be anticipated with pre-
dictive modeling in real time. This study suggests that big
data can be an indispensable tool for the prevention and
control of emerging infectious diseases.
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Epidemic Intelligence Data

We analyzed the 2 outbreak zones in the Var department of France (15 confirmed and 2
probable cases) and around the cities of Anzio and Rome in the Lazio region of central Italy (206
confirmed cases) and 74 confirmed cases in the Calabria region in south Italy (Appendix 3,
https://wwwnc.cdc.gov/ElD/article/25/6/18-0138-App3.pdf) (1-4). The disease vector Ae.
albopictus mosquito is well established in all outbreak regions (5). Worldwide monthly
chikungunya outbreak reports were compiled by the Epidemic Intelligence team at the European
Centre for Disease Prevention and Control (Appendix 3) (6). We mapped and visualized the
passenger volume of outbound flights to Europe from areas with chikungunya activity by month
for March, April, May, and June 2017.

Air Passenger Volume

We analyzed anonymized flight itinerary data obtained from the IATA Market
Intelligence Services and calculated the monthly volume of air passenger-journeys in 2016 (latest
data available; presumed to be similar to 2017) from worldwide airports in areas with
chikungunya virus active transmission to a final destination in Europe, by using a previously
described method (7) (Appendix 3). The distribution of the number of passenger-journeys
arriving into Europe from airports located in areas with active chikungunya virus transmission
was then overlaid with European vector surveillance data compiled by the European Centre for
Disease Prevention and Control (VectorNet, https://vectornet.ecdc.europa.eu) for Ae. albopictus
mosquitoes by using ESRI ArcGIS (5).
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Twitter Data

We developed a mining algorithm and collected Tweets by using the Twitter Streaming
Application Programming Interface (https://developer.twitter.com). Although the tweets
collected from the API represent only ~1% of the total Tweeter feed, when geographic boundary
boxes are used for data collection it provides a high representation of the overall geo-located
activity on Twitter (8). We filtered the collected tweets based on location by using geocodes, and
we extracted only those originating from the study area in July, August, and up to September 19,
2017. We longitudinally analyzed 8,120,417 Tweets. When Tweets from the same users could be
followed by geographic coordinates, we obtained users’ individual files. We analyzed
unidirectional mobility of Twitter users by estimating the frequency of a user being observed in a
specific geographic department within the study area and later being observed in any other
department within the same month. To compute a rate, we aggregated the total number of
movements in a month between any 2 departments and divided this by the total movement across
all the departments. The range of all between-department mobility values was 0—1 and added up
to 1 when summarized across the departments for inbound and outbound movements. We
derived this quantity as a proxy for mobility proximity between any 2 departments and computed
it for each month.

Vectorial Capacity

To estimate seasonal variability in the ability of Ae. albopictus mosquitoes to transmit
chikungunya virus, we modified our previously established climate dependent vectorial capacity
arbovirus models (9,10). The model uses temperature and diurnal temperature range to estimate
the epidemic potential of an outbreak. Theoretically, vectorial capacity is related to Ro. More
exactly, the Ro is a function of vectorial capacity (VC) and duration of viremia in humans (Th),
that is Ro = VC x Th. Vectorial capacity is a function of vector competence, vector lifespan, and

extrinsic incubation period (11) and is defined mathematically in Appendix 3.

The 4 vector-related parameters in the vectorial capacity are 1) average vector biting rate,
a; 2) the product of the probability of vector infection (bmi) and transmission per bite (bmt), bm; 3)

extrinsic incubation period, n (i.e., the interval between the acquisition of a pathogen by a vector
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and the vector’s ability to then transmit the pathogen to another susceptible host); and 4) vector

mortality rate, um ; and 4, female vector-to-human population ratio, m.

The effect of temperature on the ability of Ae. albopictus mosquitoes to transmit
chikungunya virus has not been well studied. However, um and a in relation to temperature have
been described for Ae. albopictus mosquitoes. We assumed that n, b, would have a dependence
on temperature for chikungunya virus transmission similar to that for dengue virus, although we
found evidence to support that it can be slightly lower at around 90% (11-13) and that n is
shorter, peaking at around 8 instead of 10 days (11-13). Similar to a previous study (9), m was
assumed to be proportional to its temperature-dependent survival curve. Parameter relationships

used in the analysis are provided in Appendix 1 Figure.

Climate Data

We used data from the Climate Research Unit of East Anglia University (14) to estimate
the average vectorial capacity for July, August, September, and October during 1996-2015. To
describe the effect of warmer than usual temperature, we increased the average monthly
temperature to its 75th percentile value for each month and recalculated the vectorial capacity.
The Climate Research Unit data, originally provided in 0.5° x 0.5° grids by latitude and
longitude, were resampled to fit into a grid of 0.01° to better align with the geographic

departments of the study area.
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Appendix 1 Figure. The relationship of vector-related parameters to temperature (°C), describing the

ability of Aedes albopictus to transmit chikungunya virus.
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Appendix 2 Figure 1. Average monthly vectorial capacity (VC) estimates derived on the basis of
temperature averaging to the 75th percentile of monthly distribution, July-October, 2017. Areas with

autochthonous transmission are indicated by colored polygons.
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Appendix 2 Figure 2. Number of passengers arriving from chikungunya transmission active areas into

Europe, August 2017.
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Appendix 2 Figure 3. Mobility proximity (MP) estimates from the Var department, France, to areas in
Europe with stable Ae. albopictus populations, July-September 2017. The polygons mark the outbreak

areas.
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Appendix 2 Figure 4. Estimated risk areas of chikungunya spread from the outbreak areas in the Var
department, France, based on combined vectorial capacity (VC) and mobility proximity (MP) estimates,
August-October 2017. The polygons mark the outbreak areas.
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Appendix 2 Figure 5. Vectorial capacity (VC) estimates for Lazio region, July-October 2017, based on
average climatic conditions during the period 1996—2015. The number of reported cases are overlaid as

circles.
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Anzio(VC*MP):August Rome(VC*MP):August

Appendix 2 Figure 6. Estimated risk areas of chikungunya spread from the outbreak areas of Anzio and
Rome in Lazio region based on combined vectorial capacity (VC) and mobility proximity (MP) and

estimates, August 2017. The number of reported cases are overlaid as circles.

Page 6 of 8



Anzio(VC*MP):September Rome(VC*MP):September

VC*MP
0
1e-04
3e-04
5e-04

9e-04
0.001
0.006
0.01
0.2
NA

n(' 1('

Anzio(VC*MP):October Rome(VC*MP):October

Cases
@) 0-9

(O 710-79

oL

r(' 1(‘

Appendix 2 Figure 7. Estimated risk areas of chikungunya spread from the outbreak areas of Anzio and
Rome in Lazio region based on combined vectorial capacity (VC) and mobility proximity (MP) and

estimates, September and October 2017. The number of reported cases are overlaid as circles.
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Epidemic Intelligence Data

The analysis was conducted for a specified study area in reasonable proximity to the two
outbreak zones in 15 confirmed and 2 probable cases reported in Var department (9 confirmed
and 2 probable cases reported in Cannet-des-Maures and 6 confirmed cases in Taradeau) and
around the cities of Anzio and Rome in Lazio region of central Italy (206 confirmed cases). Data
on confirmed and suspected chikungunya cases were obtained from epidemic intelligence data
and reports. The first reports of autochthonous transmission came from Var department, followed
by Lazio region, and transmission was reported later on from Calabria (74 confirmed cases),
Emilia-Romagna (1 confirmed case) and the Marche (1 confirmed case) regions in Italy (1-4). In

all outbreak regions, the disease vector Ae. albopictus is known to be well established (5).

Worldwide monthly chikungunya outbreak reports were compiled by the Epidemic
Intelligence team at the European Centre for Disease Prevention and Control (ECDC) based on
data mining from the World Health Organization, Ministries of Health, and other official and
non-official sources, such as media reports, to survey the current worldwide chikungunya
situation (6). Rather than gauging chikungunya incidence qualitatively, our assessment was
based on chikungunya events identified by the ECDC through web crawl searches and from
confidential/official sources, such as Early Warning and Response Systems, Program for
Monitoring Emerging Diseases, Medical Information System, and Global Public Health
Intelligence Network. Weekly notifications from these sources were evaluated and geocoded by
month. We mapped and visualized the passenger volume of outbound flights to Europe from

areas with chikungunya activity by month, namely for March, April, May, and June 2017.
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Air Passenger Volume

The International Air Transport Association (IATA) database has the most voluminous
and comprehensive aviation data from over 80,000 travel and online agencies, 400 airlines, and
170 countries. Travelers on commercial, connecting and scheduled charter flights are captured.
We analyzed anonymized flight itinerary data obtained from IATA Market Intelligence Services
and calculated the monthly volume of air passenger-journeys in 2016 (latest data available;
presumed to be similar to 2017) from airports worldwide located in areas with chikungunya
active transmission with a final destination in Europe. We assumed that human passenger-
journeys were the main vehicle of viral spread, rather than infected mosquitoes in airplanes,
based on the index cases of past outbreaks that had a travel history to endemic areas. These
large-scale IATA passenger data represent ~93% of the world’s commercial air traffic, while the
remainder was estimated using market intelligence. The distribution of number of passenger-
journeys arriving into Europe from airports located in areas with active chikungunya
transmission was then overlaid with European vector surveillance data compiled by the ECDC
(VectorNet) for Ae. albopictus using ESRI ArcGIS (5). Chikungunya continues to spread
internationally due to several factors, most notably the adaptive mutations in the viral genome
that enabled the virus to be more easily transmitted by Ae. albopictus (7). This vector has
expanded its geographic range through increasing global trade of used tires and plants and
established itself in areas with suitable climate and habitat in many parts of the world. However,
Ae. aegypti, another competent vector for the Italian 2017 chikungunya virus strain (8), is largely
not present in continental Europe with the exception of a small region around the eastern coast of
the Black Sea. Once an outbreak occurs the disease can entrench itself in the local vector

population and become endemic if climate allows vectors to be active around the year.

Vectorial Capacity

The vectorial capacity can be described by the following mathematical expression:

VC = ma?bme™™™/um. See Appendix 1, https://wwwnc.cdc.gov/EID/article/25/6/18-0138-
Appl.pdf, for a more detailed description.
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Wikipedia and Google Trend Data

Wikipedia is a free, internet-based encyclopedia structured as an interconnected network
of open-content articles and is considered one of the top Web sites visited globally (9). Internet
users typically use Wikipedia to access background information on a specific topic and related
subtopics. Although web searches, usually using Google, lead users to a Wikipedia article, the
majority of users follow the links provided in the article to access other related articles.
Therefore, it has been argued that Wikipedia access statistics may provide valuable insight into
the emergence and shift of collective interests or activities of individuals, and sudden peaks in
user access of specific Wikipedia pages may reflect extreme events in nature or society (10).
Here we chose specific articles related, namely mosquitoes, albopictus and chikungunya, across
the Italian, French, German (as control) and English (as reference) language editions of
Wikipedia, and extracted daily article access logs, which provide a summary file listing the
number of access requests for each article per day in each language during the period from July
to November 2017. The Wikipedia data was downloaded 2018-10-13 using the
mwviews.api/PageviewsClient (https://github.com/mediawiki-utilities/python-mwviews)
Wikipedia articles “Aedes_albopictus” (redirected from “Zanzara tigre” = tiger mosquito),
“Culicidae” (redirected from “Zanzara/e” = mosquitoes singular and plural), “Chikungunya)
We also downloaded Google Trends data 2018-01-26 from
https://trends.google.com/trends/explore?date = 2017-06-25%202017-11-
15&geo0 = IT&Qq = %2Fm%2F09f96,%2Fm%2F01__71,%2Fm%2F01yy_q using search topics
which include several similar search terms (https://support.google.com/trends/answer/4359550).
As Wikipedia gives absolute page hits and Google gives only proportions, the Wikipedia articles
were added and calculated as percentages from the maximum number of page hits of the three

search terms.

Our analysis of Wikipedia access logs and Google Trends shows clear peaks in terms of
number of access requests for the articles on mosquitoes (Culicidae) and Albopictus first in
June/July and then in mid-September in the Italian language version of Wikipedia (Appendix 2
Figure 8, https://wwwnc.cdc.gov/ElD/article/25/6/18-0138-App2.pdf). A distinct peak in access
requests was also observed for Tiger mosquitoes in mid-September in Italian language. We did

not observe such peaks for these Wikipedia articles in 2016. For the articles on chikungunya, we
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observed peaks in early August in Italian Wikipedia and in mid-August in French Wikipedia,
which probably indicates an increasing awareness of the disease among the public. We observed
a larger peak in access requests on chikungunya in Italian Wikipedia later in mid-September,
followed by another small peak in mid-October, probably as a result of the continued exposure of
the public through the media to the outbreak news because of its spread. We found a strong
correlation between the number of notified chikungunya cases and the access requests for
chikungunya in the Italian language version of Wikipedia (Figure 2). An overlay with the search
data on chikungunya from Google yielded a similar pattern, probably because Wikipedia hits are
typically preceded by Google searches (Appendix 2 Figure 8). These observations suggest that
Wikipedia access logs to articles on specific health topics have the potential to supplement
disease surveillance and outbreak prediction efforts when combined with disease incidence data,

as demonstrated in (11).
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