
We jointly estimated relative risk for dengue and Zika virus 
disease (Zika) in Colombia, establishing the spatial asso-
ciation between them at the department and city levels for 
October 2015–December 2016. Cases of dengue and Zika 
were allocated to the 87 municipalities of 1 department and 
the 293 census sections of 1 city in Colombia. We fitted 8 
hierarchical Bayesian Poisson joint models of relative risk 
for dengue and Zika, including area- and disease-specific 
random effects accounting for several spatial patterns of 
disease risk (clustered or uncorrelated heterogeneity) within 
and between both diseases. Most of the dengue and Zika 
high-risk municipalities varied in their risk distribution; those 
for Zika were in the northern part of the department and 
dengue in the southern to northeastern parts. At city level, 
spatially clustered patterns of dengue high-risk census sec-
tions indicated Zika high-risk areas. This information can be 
used to inform public health decision making.

Dengue and Zika virus disease (hereafter referred to as 
Zika) are infectious diseases caused by arboviruses in 

the family Flaviviridae. Dengue virus has 4 serotypes (1–
4); serotypes 2 and 3 are associated with severe disease in 
persons with second dengue infections. Zika virus infection 
is associated with congenital malformations in babies born 
from women infected during pregnancy and with Guillain-
Barré syndrome in infected adults (1).

Colombia is highly affected by vectorborne diseases. 
Villar et al. (2) reviewed the dengue epidemic in this coun-
try for 2000–2010 and reported an increasing epidemic 
trend for the period; outbreaks occurred in 2001, 2003, 
and 2010. In 2016, health authorities in Colombia reported 
>101,016 dengue cases that resulted in 289 deaths (3) and 
9,799 Zika cases that were laboratory confirmed and 96,860 
suspected Zika cases diagnosed by clinical signs (4).

For this study, we concentrated on the spatial patterns 
assessment of risk for dengue and Zika; in particular, we 

focused on the relative risk (RR) estimation for areal data 
by using hierarchical Bayesian models for these infections. 
RR represents the excess (or lack) of risk in a small area 
compared with the background risk. RR is mostly based on 
models and supported by Bayesian estimation methods (5). 
We used the following as study regions: the municipalities 
in the department of Santander, Colombia (1 of the depart-
ments where incidence of dengue and Zika for 2015–2016 
was highest), and the city census sections belonging to the 
capital city of Santander (1 of the cities most affected by 
dengue and Zika for the same period).

Racloz et al. (6) and Louis et al. (7) reviewed the spa-
tial patterns assessment of dengue risk; specifically for 
RR estimation of dengue, Ferreira and Schmidt (8) and 
Martínez-Bello et al. (9) estimated RR for dengue on a 
local spatial scale; and Restrepo et al. (10) and Martínez-
Bello et al. (11) applied methods for the spatiotemporal 
assessment of dengue risk. Examples for the spatial pat-
terns assessment of Zika risk run from merely descriptive 
methods to model-based approaches. For instance, in Co-
lombia, descriptive risk maps associating Zika incidence 
rates with environmental and sociodemographic factors 
have been produced in the departments of Sucre (12), Tol-
ima (13), Guajira (14), Santander, and Norte de Santander 
(15) and in the city of Pereira in the department of Ri-
saralda (16). Model-based spatial patterns assessment of 
Zika risk have been developed for the 33 departments in 
Colombia by using Poisson models for the RR for Zika 
(17). The distribution of risk for Zika transmission among 
counties/districts in Guangdong Province, China, was as-
sessed by using analytic hierarchy process models (18).

Zika, dengue, and chikungunya are also jointly studied 
by using the spatial patterns assessment of risk because the 
viruses share similar transmission routes (Aedes mosqui-
toes). On a large scale in Brazil, ecological studies have 
explored the risk factors for unusual spatial patterns of mi-
crocephaly, including dengue, Zika, and chikungunya data 
(19). Also estimated is the potential spatial risk for Zika 
and chikungunya according to socioenvironmental factors, 
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estimating the size of the populations at risk for both dis-
eases (20). On a small geographic scale, the risk factors for 
cocirculating arboviruses (dengue, Zika, chikungunya) at 
the community level have been evaluated (21).

In Colombia, Krystosik et al. (22) generated city-level 
risk maps of chikungunya, Zika, and dengue supporting 
vector-control strategies; Martínez-Bello et al. (23) esti-
mated the RR for dengue and Zika by using spatiotemporal 
interaction effects models for 1 department and 1 city in 
Colombia. Riou et al. (24) assessed the spatial patterns of 
risk for the 2013 Zika and chikungunya outbreaks in the 
French Polynesia islands, and Funk et al. (25) jointly mod-
eled Zika and dengue time series data from the Zika out-
break in Yap Island in the Pacific Ocean.

Our aim with this study was to jointly estimate the dis-
ease- and area-specific RRs for dengue and Zika by using 
hierarchical Bayesian joint models accounting for the spa-
tial association between both diseases. We used data from 
the 2015–2016 Zika outbreak in Colombia and analyzed 2 
levels of spatial data aggregation: the department level (dis-
ease counts aggregated per municipality) in the department 
of Santander and the city level (disease counts aggregated 
per census section) in the city of Bucaramanga (Santander).

Materials and Methods
Colombia (Figure 1, panel A), population 48.7 million, 
comprises ≈1.14 million km2 divided into 33 administra-
tive regions called departments, each 49.6–110,029.4 km2 
(Table 1). The department of Santander (Figure 1, panel B) 
covers 30,642 km2, is divided into 87 municipalities, and 
has >2 million inhabitants. Santander is in the northeastern 
region of Colombia, and its administrative center, Bucara-
manga (Figure 1, panel C), is in the northeastern region of 

the department. Bucaramanga covers 162 km2 (urban area 
49.6 km2), is divided into 293 urban census sections, and 
according to the 2016 census has a population of 528,575. 

The Zika epidemic started on August 9, 2015 (26). Up 
to the first epidemiologic week of 2017, Colombia reported 
106,659 Zika cases (219 cases/100,000 population) that 
were suspected by clinical signs and confirmed by labora-
tory. For the epidemiologic year 2016, the country reported 
101,016 dengue cases (207.6 cases/100,000 population; 
Table 2). Since 2001, one of the departments with the high-
est dengue incidence in Colombia has been Santander (2); 
in 2016, its dengue incidence was the sixth highest among 
the 33 departments (331.63 cases/100,000 population) (3); 
in 2015–2016, its Zika incidence was the seventh highest 
(493.09 cases/100,000 population) (4). The incidence rate 
for Zika in Santander was higher than the national aver-
age, accounting for 9.76% of the total cases in Colombia 
(3). With regard to dengue, in 2016 Santander reported 
6.67% of the total cases for Colombia (Table 2). Within the 
department, 35.52% of Zika cases (692.81/100,000) and 
35.62% of dengue cases (467.3/100,000) were reported in 
Bucaramanga (Table 2).

Department-Level Data
We aggregated cases of dengue and Zika for the study 
period (from epidemiologic week 42 in 2015 through epi-
demiologic week 52 in 2016) obtained from SIVIGILA 
(the public health surveillance system of Colombia) in the 
87 municipalities of Santander by using cartography from 
the National Geostatistical Framework (27). The case 
definitions for dengue and Zika correspond to codes 210 
(dengue), 220 (severe dengue), 580 (dengue mortality), 
and 895 (Zika), obtained from the SIVIGILA protocols 
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Figure 1. Location of the areas included in joint estimation of relative risk for dengue and Zika virus infections, Colombia, 2015–2016. 
A) Country of Colombia; inset shows location of Colombia in South America. B) Department of Santander; inset shows location of 
Santander in Colombia. C) City of Bucaramanga; inset shows location of Bucaramanga in Santander.
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for dengue (28) and Zika (29). We calculated expected 
values of dengue and Zika by municipality by using 2016 
population projections provided by the Colombia Ad-
ministrative Department of National Statistics. We first 
calculated incidence rates for dengue and Zika for 5-year 
patient age groups and for sex on the basis of observed 
cases recorded during the study period. We then multi-
plied these age- and sex-specific incidence rates to the 
population structure of each municipality, generating dis-
ease-specific expected values for both diseases. Last, we 
aggregated the age- and sex-specific expected values per 
municipality of dengue and Zika to obtain standardized 
expected counts per municipality for dengue and Zika.

City-Level Data
Cases of dengue and Zika, notified in Bucaramanga and 
obtained from SIVIGILA for the study period, were geo-
coded and allocated to 293 census sections in the city (27). 
A census section is a cartographic unit comprising 1–9 cen-
sus blocks, consisting of built or unbuilt lots bounded by 
public roads or pedestrian walkways (27). We calculated 
expected values of dengue and Zika by census sections by 
using a similar method to the one applied at the depart-
ment level. Using the 2016 population projections provided 
by the Colombia statistical office, we calculated incidence 
rates for dengue and Zika by 5-year patient age groups and 
sex for the study period. Next, we multiplied the incidence 
rates for the population structure (by sex and age group) of 
each census section obtained from the Colombia Census 
and aggregated the age- and sex-specific expected counts 
per census section to obtain the standardized expected val-
ues of dengue and Zika per census section.

Joint Models for Estimating Relative Risk
We assumed that the observed counts of dengue or Zika 
aggregated by area (87 municipalities at the department 
level or 293 census sections at the city level) follow a Pois-
son distribution, with mean parameter equal to the product 
of the disease- and area-specific expected values and RR. 
The logarithm of the RR is the additive result of disease- 
and area-specific random effects accounting for the uncor-
related and clustered spatial patterns of risk and possibly 
covariates (30). Random effects for spatially clustered pat-
terns of risk are unobserved variables recovering risk auto-
correlation between adjacent areas, indicating that risk in 
one area is highly associated with risk in neighboring areas. 
The lack of spatial risk autocorrelation is accounted for by 
spatial uncorrelated random effects (5,31).

A joint model of RR for dengue and Zika defines a struc-
ture for the nature of the spatial association between the dis-
eases (5). To that end, we fitted 8 Bayesian Poisson models 
(5,31) of joint estimation of RR to the dengue and Zika data 
at the department and city levels. Formulation of the statistical 
model is available in the Appendix (https://wwwnc.cdc.gov/
EID/article/25/6/18-0392-App1.pdf). Here we describe the 
spatial patterns of risk for every joint model.

Model 1 contains area- and disease-specific random 
effects capturing uncorrelated spatial patterns of dengue 
and Zika risk. Choosing this model implies that dengue and 
Zika high-risk areas are not associated with each other and 
show no clustering (Figure 2, panel A).

Model 2 incorporates area- and disease-specific ran-
dom effects capturing uncorrelated spatial patterns of den-
gue and Zika risk, where the random effects of both dis-
eases are spatially associated. Model 2 assumes that the 
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Table 1. Geographic divisions at national, department, and city levels, Colombia 
 
Level Division 

Area, km2 
Minimum Mean Maximum Total 

Colombia 33 departments 49.6 34,678.30 110,029.40 1,144,385 
Santander 87 municipalities 18.8 352.20 3173.80 30,642 
Bucaramanga 293 census sections 0.01 0.17 2.64 49.6 

 

 
Table 2. Zika and dengue suspected and confirmed cases reported in Colombia, department of Santander, and city of Bucaramanga, 
2015–2016 
Disease, level Suspected* Confirmed† Total‡ Incidence rate§ Population  1,000 
Zika      
 Colombia¶ 96,860 9,799 106,659 219.0 48,654 
 Santander# 9,420 547 9,967 493.1 2,090 
 Bucaramanga** No data No data 3,662 692.8 529 
Dengue      
 Colombia†† 100,117 899 101,016 207.6 48,654 
 Santander†† No data No data 6934 331.6 2,090 
 Bucaramanga** No data No data 2470 467.3 529 
*Based on clinical signs.  
†Laboratory confirmed. 
‡Suspected cases with laboratory confirmation. 
§(Total no. cases/population  1,000)  100,000. 
¶August 9, 2015–January 5, 2017 (3). 
#Epidemiologic week 45 of 2015 to epidemiologic week 52 of 2016 (3). 
**Epidemiologic week 45 of 2015 to epidemiologic week 52 of 2016 (this study). 
††Epidemiologic weeks 1–52, 2016 (2). 

 



 Estimation of Risk for Dengue and Zika Infections

random effects for uncorrelated spatial patterns are linearly 
associated for both diseases; thus, dengue and Zika high-
risk areas occur at the same position (Figure 2, panel B).

Model 3 contains area- and disease-specific random 
effects representing spatially clustered patterns of dengue 
and Zika risk, where the random effects are not associated 
between diseases. In this model, dengue high-risk areas are 
clustered and Zika high-risk areas are clustered, but dengue 
and Zika high-risk clustered areas are not spatially associ-
ated (Figure 2, panel C).

Model 4 contains area- and disease-specific random 
effects revealing spatially clustered patterns of dengue and 
Zika risk, where the random effects are linearly associated 
between diseases. In this model, dengue and Zika high-
risk areas are spatially associated; thus, there are spatially 
clustered patterns of dengue and Zika high-risk areas at the 
same spatial locations (Figure 2, panel D).

Model 5 incorporates area- and disease-specific ran-
dom effects revealing uncorrelated spatial patterns of 
dengue and Zika risk, and the spatial association between 
both diseases is modeled by using shared components of 
clustered spatial patterns of dengue and Zika risk. In this 
model, dengue high-risk areas are next to Zika high-risk 
areas, but dengue high-risk areas are not clustered and Zika 
high-risk areas are not clustered (Figure 2, panel E).

Model 6 incorporates area- and disease-specific  
random effects revealing spatially clustered patterns of den-
gue and Zika high risk, and the spatial association between 
both diseases is accounted for by using shared random ef-
fects of spatially clustered patterns of dengue and Zika high 
risk. In this model, spatially clustered patterns of dengue 
high-risk areas are adjacent to spatially clustered patterns 
of Zika high-risk areas (Figure 2, panel F).

Model 7 contains area- and disease-specific random 
effects accounting for spatially clustered patterns of Zika 
high risk conditioned on random effects for spatially clus-
tered patterns of dengue high risk. Thus, dengue high-risk 
areas are determinants of the presence of Zika high-risk ar-
eas (Figure 2, panel G).

Model 8 contains area- and disease-specific random ef-
fects accounting for spatially clustered patterns of dengue 
high risk conditioned on random effects for spatially clus-
tered patterns of Zika high risk. Thus, Zika high-risk areas 
are determinants of the presence of dengue high-risk areas 
(Figure 2, panel H).

We summarized the association structure of the joint 
models of RR (Table 3); every model captures the nature of 
the spatial association between dengue and Zika risk. We fit-
ted the Bayesian Poisson models by applying Markov chain 
Monte Carlo simulations and using WinBUGS 1.4 software 
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Figure 2. Schematic representation of the spatial patterns of dengue and Zika risk revealed by the joint models of relative risk models, 
Colombia, 2015–2016. A) Model 1; B) model 2; C) model 3; D) model 4; E) model 5; F) model 6; G) model 7; H) model 8. For a set of 
small areas, high-risk areas are represented in red and low-risk areas are represented in green, depicting several patterns that could or 
could not be shared for both diseases in the same geographic area.

 
Table 3. Association structure assumed by relative risk models fitted to department-and city-level dengue and Zika data for the 2015–
2016 Zika virus disease outbreak, Colombia 

Model no. 

Spatially structured association 
between dengue and  
Zika high-risk areas Joint association between dengue and Zika high-risk areas 

1 No No 
2 No Yes, linear 
3 Yes No 
4 Yes Yes, linear 
5 No Spatially structured shared component 
6 Yes Spatially structured shared component 
7 Yes Zika risk conditioned by dengue risk 
8 Yes Dengue risk conditioned by Zika risk 
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(32) for Bayesian analysis. We selected noninformative prior 
distributions for the parameters and hyperparameters; model 
specifications are presented in the Appendix. Every model was 
fitted by using 100,000 burn-in iterations, 10,000 iterations for 
inferences, a thinning of 10, three chains, and 1,000 iterations 
per chain for final inferences. For model selection, we used the 
deviance information criterion (DIC) (33), for which the low-
est DIC estimates the model with the best predictions subject 
to the DIC difference between the model with minimum DIC 
and the next model being >5, as substantial evidence in favor 
of the first model with respect to the second (34).

Results
For the Santander department, the analysis included 10,051 
Zika patients (63.1% female, 36.9% male) and 7,891 dengue 
patients (48.6% female, 51.4% male). The analysis of Bu-
caramanga city included 3,662 Zika patients (61.2% female, 
38.8% male) and 2,470 dengue patients (49.3% female, 50.7% 
male). Figure 3 (https://wwwnc.cdc.gov/EID/article/25/6/18-
0392-F1.htm) shows the age- and sex-specific incidence rates 
for dengue and Zika in Santander (Figure 3, panel A) and 

Bucaramanga (Figure 3, panel B). At the department and city 
levels, reported Zika cases were consistently higher among 
female patients in the 10–14 and 55–59 year age groups, and 
reported dengue cases were highest among patients of both 
sexes in the 5–9 and 20–24 year age groups. The age- and sex-
specific incidence rates were slightly higher at the city level 
than the department level.

We mapped the incidence rates (cases/100,000 popu-
lation) and the standardized incidence ratios (observed 
values/expected values) for dengue and Zika (Figure 4). 
At the department level, the incidence rate for Zika was 
0–3,688 cases/100,000 population; for dengue, 0–4,285 
cases/100,000 population (Figure 4, panel A). At the de-
partment level, the incidence rate for dengue was highest in 
the southeastern municipalities; for Zika, in the northeast-
ern municipalities. The standardized incidence ratios for 
dengue and Zika at the department level follow the findings  
of the incidence rate map; however, the standardized in-
cidence ratio accounts for the expected number of cases, 
so some areas with a high observed incidence rate do not 
show a high standardized incidence ratio (Figure 4, panel 
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Figure 4. IRs and SIRs for dengue and Zika virus disease, Colombia, 2015–2016. A) Santander IR; B) Santander SIR; C) Bucaramanga 
IR; D) Bucaramanga SIR. IR, incidence rate; SIR, standardized incidence rate.
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B). We determined heterogeneous incidence rates for den-
gue and Zika at the city level (Figure 4, panel C); some 
high incidence rate census sections are in the northern and 
central areas of the city. We also determined the standard-
ized incidence ratio per census section (Figure 4, panel D); 
as before, the standardized incidence ratio map shows the 
findings of the incidence rate, smoothing the geographic 
incidence estimates by census sections in Bucaramanga.

We compiled the results of the selection statistics for 
the joint models of RR at the department level (Table 4). 
Based on the lowest DIC, model 5 (disease-specific random 
effects for uncorrelated spatial patterns of risk and shared 
random effects of spatially clustered patterns for both dis-
eases) is the selected model (deviance 808.3, DIC 942.9) 
for Santander; at the city level (Table 5), model 7 (Zika 
risk distribution conditioned by dengue risk) is the selected 
final model (deviance 2,869.7, DIC 3,119.3) for Bucara-
manga. We included the DIC differences between models, 
showing that after the final selected model, models 7 and 8 
were the closest models at the department level; models 8 
and 4, at the city level (Tables 4, 5).

Figure 5 displays the posterior mean RR and the lower 
bound of the 95% credible interval (CrI) of RR >1 (95% 
CrI RR >1) of dengue and Zika obtained from the selected 
final models in Tables 4 and 5. In Santander, the poste-
rior mean RR (Figure 5, panel A) shows the standardized 
incidence ratio pattern displayed in Figure 4, panel A; 
as a byproduct of the modeling process, Figure 5, panel 
B, shows the municipalities with 95% probability of RR 
higher than that for the other municipalities. Most of the 
dengue and Zika high-risk municipalities differ in risk  

distribution: Zika high-risk municipalities are in the north-
ern part of the department, and dengue high-risk munici-
palities are in the southern to northeastern parts. For Bu-
caramanga, the dengue and Zika posterior mean RR maps 
revealed the nonclustered risk pattern of the diseases (Fig-
ure 5, panel C), also displayed by the standardized inci-
dence ratio map in Figure 4, panel C. However, the model 
shrinks the posterior mean RR, capturing the close asso-
ciation between Zika and dengue high-risk distribution per 
census sections. We identified the census sections with 
95% probability of RR being higher than in the other areas 
(Figure 5, panel D), showing dengue high-risk census sec-
tions associated with Zika high-risk census sections at the 
city level.

Discussion
Our study illustrates the joint estimation of RR for dengue 
and Zika at the department and city levels in Colombia. A 
battery of joint models of RR captured the spatial association 
between the diseases during the 2015–2016 Zika outbreak. 
The model selection process was based on DIC statistics; 
and we assessed the model’s goodness-of-fit by using resid-
ual analysis, fitted-observed scatter plots, and the posterior 
predictive checks of overdispersion recovery (Appendix).

At the department level, the selected model 5 reveals 
spatially clustered patterns of high-risk municipalities for 
both diseases, while keeping disease- and area-specific 
uncorrelated spatial patterns of high-risk municipalities,  
precluding selection of other feasible but not optimal mod-
els, such as models 7 and 8, containing area- and disease-
specific spatially clustered patterns of high risk. The selected  

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 25, No. 6, June 2019 1123

 
Table 4. Selection statistics from the joint models of relative risk for dengue and Zika, department of Santander, Colombia,  
2015–2016* 

Model no. Deviance Parameter DIC 
Δ-DIC 

M2 M3 M4 M5 M6 M7 M8 
1 810.9 144.6 955.5 1.3 359.9 321.6 12.6 330.7 5.5 4.1 
2 814.2 140.0 954.2  361.2 322.9 11.3 332 4.2 2.8 
3 991.4 324.0 1315.4   38.3 372.5 29.2 365.4 364 
4 976.8 300.4 1277.1    334.2 9.1 327.1 325.7 
5 808.3 134.6 942.9     343.3 7.1 8.5 
6 987.3 299.0 1286.2      336.2 334.8 
7 810.4 139.6 950.0       1.4 
8 811.7 139.7 951.4        
*Blank cells indicate no data available. DIC, deviance information criterion; M, model; Δ-DIC, DIC difference. 

 

 
Table 5. Selection statistics from the joint models of relative risk for dengue and Zika, city of Bucaramanga, Colombia, 2015–2016* 

Model no. Deviance Parameter DIC 
Δ-DIC 

M2 M3 M4 M5 M6 M7 M8 
1 2870.1 364.9 3232.1 99.8 22.3 101.3 97.9 100 112.8 102.9 
2 2853.3 279.0 3132.3  122.1 1.5 1.9 0.2 13 3.1 
3 2922.4 331.9 3254.4   123.6 120.2 122.3 135.1 125.2 
4 2884.2 246.6 3130.8    3.4 1.3 11.5 1.6 
5 2856.8 277.4 3134.2     2.1 14.9 5 
6 2888.9 243.3 3132.1      12.8 2.9 
7 2869.7 249.6 3119.3       9.9 
8 2874.2 255.0 3129.2        
*Blank cells indicate no data available. DIC, deviance information criterion; M, model; Δ-DIC, DIC difference. 
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model shows that dengue- and Zika-specific high-risk mu-
nicipalities are not clustered but that dengue high-risk mu-
nicipalities are next to Zika high-risk municipalities.

At the city level, the selected model 7 contains con-
ditional random effects for spatially clustered patterns of 
high-risk census sections, where Zika high-risk census sec-
tions are conditioned on dengue high-risk census sections; 
thus, Zika high-risk census sections are highly associated 
with dengue high-risk census sections. Models 8 and 4 
were other feasible but not optimal options; although both 
models reveal the spatially clustered distribution of risk, 
the spatial data distributions do not support strong spatial 
association of dengue high-risk areas at the same loca-
tions as Zika high-risk areas. Model 7 shows that dengue 
or Zika high-risk areas are spatially clustered; dengue and 
Zika high-risk census sections are near other high-risk cen-
sus sections. Thus, at the city level, clustered census sec-
tions display favorable conditions for transmission of both  
diseases, justifying a deeper study of environmental, infra-
structural, and socioeconomic conditions associated with 
dengue and Zika high risk in those areas.

Model-based estimates of posterior means and low-
er bounds of CrIs of RR were represented in risk maps. 
These maps identified areas with a given risk probability 
and highlighted municipalities or census sections with high 
probable risk for dengue or Zika.

The area- and disease-specific risk estimates from the 
joint models accounting for the spatial association of both 
diseases (models 5 [department level] and model 7 [city 
level]) were more accurate than the estimates recovered ig-
noring the association of both diseases. It would be useful 
to compare risk estimates from joint models, with estimates 
ignoring the association structure of cocirculating arboviral 
diseases. For instance, Krystosik et al. (22) estimated the 
combined risk for dengue, Zika, and chikungunya but did 
not provide disease-specific risk estimates; Costa et al. (35) 
found associations in the spatial distribution of dengue, 
Zika, and chikungunya but did not use the information on 
the diseases’ association to improve the accuracy of the risk 
estimates. The special characteristics of the joint modeling 
of cocirculating arboviruses provide an epidemiologic tool 
for transmission control and disease mitigation (36).
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Figure 5. Posterior mean RR and 95% credible interval (CrI) of RR >1 (95% CrI RR >1), from model 5 for the department of Santander 
and from model 7 for the city of Bucaramanga, Colombia, 2015–2016. A) Posterior mean RR for Santander; B) 95% CrI RR >1 for 
Santander; C) posterior mean RR for Bucaramanga; D) 95% CrI RR >1 for Bucaramanga. RR, relative risk.
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Our study has some limitations. Although notification 
of dengue and Zika is compulsory in Colombia, a large pro-
portion of reported cases are diagnosed by clinical signs 
and not laboratory confirmed. Because we used suspect-
ed and confirmed dengue and Zika cases, some cases in-
cluded in the study may have been misdiagnosed. Another 
potential source of study bias is underreporting, as shown 
by Romero-Vega et al. (37) for dengue in Colombia; the 
National Health Institute of Colombia calculated an under-
reporting rate of 49% for Zika in a high-incidence town in 
Colombia (38). However, we used the same data that the 
Colombia authorities use to generate public health informa-
tion for making decisions about controlling and preventing 
activities of public and private health institutions, extend-
ing the current information produced by the public health 
surveillance system, supporting surveillance activities for 
Zika and dengue, providing information for monitoring the 
geographic distribution of both diseases, and characterizing 
spatially the disease distribution in the population (39).

Determinants of dengue and Zika risk as covariates 
within the joint models (e.g., using datasets such as the 
ecological and environmental spatial dataset developed by 
Siraj et al. [40] for Colombia) remain to be elucidated. Oth-
er joint models available in the spatial analysis literature 
should be tested, jointly modeling other arboviral diseases 
such as chikungunya together with dengue and Zika and 
including joint models of RR of dengue and Zika within 
real-time surveillance platforms (41). 

In summary, our method for mapping cocirculating den-
gue and Zika provides a tool for describing disease distribu-
tion, based on the epidemiologic complexities of both diseases. 
Information on the association between diseases is of value, 
especially in areas where multiple arboviruses cocirculate, and 
can be used to improve inferences and interpretations and thus 
contribute to informed public health decision making.
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