
Larvae feed on birds and molt to become nymphs, re-
maining on the same avian host up to 26 days, a period 
that usually lasts until the trans-Saharan migrating birds 
have reached Europe (1). Thus, the half-fed nymph prob-
ably was attached to the whinchat when migration started. 
Nymphs drop off the bird only after completion of the 
blood meal and molt on the ground before attaching to 
their second, final hosts, which are usually large mammals, 
including humans.

Although detection of virus genome does not neces-
sarily imply the presence of live virus that is able to spread 
locally, our findings, consistent with the recent autochtho-
nous cases in Spain, underscore the need to monitor any 
introduction and circulation of CCHFV in southwestern 
Europe. Such monitoring should focus on sites where mi-
grants rest or nest and where a local population of com-
petent ticks and their hosts interact. Raising awareness of 
possible outbreaks should also include specific surveillance 
and contingency plans focused on categories of persons 
and animals at elevated risk for CCHFV infection.
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We report a sheep infected with Echinococcus canadensis 
G8 tapeworm in China in 2018. This pathogen was previ-
ously detected in moose, elk, muskox, and mule deer in Eu-
rope and North America; our findings suggest a wider host 
range and geographic distribution. Surveillance for the G8 
tapeworm should be conducted in China.
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Cystic echinococcosis (CE) is a zoonotic disease of 
worldwide distribution that causes disease, death, and 

economic loss in many domestic and wildlife ungulates and 
carnivore species, as well as in humans. Animals and hu-
mans can become infected through the accidental ingestion 
of Echinococcus tapeworm eggs (1,2). Echinococcus granu-
losus sensu stricto (G1, G3) tapeworms are considered the 
major cause of CE globally; however, cases attributable to 
E. canadensis genotypes within the E. granulosus tapeworm 
complex are increasingly being recognized (3). Overall, E. 
canadensis tapeworms comprise 4 genotypes (G6, G7, G8, 
G10), although the taxonomy is still being debated (4). E. 
canadensis G8 tapeworms were initially identified in 1994 in 
a moose (Alces alces) in Minnesota, USA (Appendix Table, 
https://wwwnc.cdc.gov/EID/article/25/7/18-1585-App1.
pdf). Then, in 2002, two infections were reported in hu-
mans in Alaska. G8 tapeworms have also been found in elk 
(Cervus canadensis, 2006) and muskox (Ovibos moschatus, 
2013) in Canada. Updated epidemiologic data show infec-
tions have also occurred in Estonia moose (2008), Russia 
moose (2013), and a US mule deer (Odocoileus hemionus, 
2018). As of April 2019, at least 4 species (moose, elk, mus-
kox, and mule deer) have been proven to serve as intermedi-
ate hosts of G8 tapeworms in Europe and North America. We 
report a potential new public health threat regarding sheep 
(Ovis aries) infected with E. canadensis G8 tapeworms in 
China and highlight the potential wider host range and geo-
graphic distribution of this species.

During 2017, we conducted a molecular epidemiolog-
ic survey of CE in northwestern China and collected 277 
hydatid cysts from sheep (78 from Qinghai-Tibet Plateau, 
60 from Xinjiang Autonomous Region) and yaks (Bos 
mutus; 139 from Qinghai-Tibet Plateau) at local slaugh-
terhouses. During sampling, we handled all animals in 
strict accordance with the animal welfare laws of China. 
We genotyped the hydatid cysts using the partial mito-
chondrial cox1 gene sequence, as described previously 
(5), and found that most cyst specimens were represented 
by E. granulosus G1 and G3 tapeworms (data not shown), 
and 1 sheep cyst was diagnosed as an E. canadensis G8–
like tapeworm infection (herein designated sheep-XN) 
(Appendix Figure 1, panel A). To further investigate the 
genotype of tapeworm sheep-XN, we amplified the full-
length cox1 gene (1,608 bp) and the mitochondrial nad1 
gene (894 bp), a method proven effective for Echinococ-
cus tapeworm genotyping (4). This analysis verified that 
sheep-XN clustered with E. canadensis G8 tapeworms 
(Appendix Figure 1, panel B). However, given that partial 
mitochondrial DNA (mtDNA) sequences are insufficient 
to identify genotype (because of limited loci information) 
(6), we amplified the complete mtDNA of sheep-XN and 
compared it with Echinococcus mtDNA sequences from 
GenBank. The resulting phylogenetic tree showed the 
same topologic structure as that acquired when using the 
cox1 and nad1 genes, suggesting that sheep-XN was an E. 
canadensis G8 tapeworm (Figure).
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Figure. Phylogenetic analysis of Echinococcus species of different genotypes, strains, and host origins, including the E. canadensis 
G8 tapeworm identified in a sheep in China, 2018. Phylogenetic trees were inferred by maximum-likelihood analysis on the basis of 
concatenated amino acid data of 12 protein-coding genes by using the Jones-Taylor-Thornton model (A) and concatenated nucleotide data 
of 12 protein-coding genes by using the Tamura-Nei model (B) in MEGA7.0 (https://www.megasoftware.net). The reference species Taenia 
solium was used as the outgroup. We performed bootstrapping with 1,000 replicates to calculate the percentage reliability for each node in 
both data sets; only values of >50% are shown. Tree branch lengths are proportional to the evolutionary distance. The box contains the  
E. canadensis G8 tapeworm identified in this study (GenBank accession no. MH791328) and its closest relative from a moose in the United 
States (GenBank accession no. AB235848). Sheep shown in white represents a potential new intermediate host of E. canadensis G8.



We confirmed that the sheep-origin hydatid cyst was 
E. canadensis G8 tapeworm  (Appendix Figure 1, panel 
C) and suggest that this pathogen potentially poses a new 
public health threat on the Qinghai-Tibet Plateau of Chi-
na, where human echinococcosis is prevalent. Previous 
research has shown that sterile cysts usually result when 
Echinococcus spp. infect species not commonly infected 
(7). However, for the sheep-origin cyst, we found numer-
ous protoscoleces in the hydatid fluid, indicating the cyst 
was fertile. Thus, sheep might serve as another intermedi-
ate host of the E. canadensis G8 tapeworm in nature and 
spread protoscoleces to definitive hosts, posing a threat to 
local herdsmen and livestock.

G6 and G7 tapeworms can circulate through the do-
mestic cycle (in animals such as camels, pigs, and dogs) 
or the sylvatic cycle (in animals such as reindeer and 
wolves), and G8 and G10 tapeworms are generally be-
lieved to be restricted to the sylvatic cycle in circumpo-
lar regions (Appendix Table) (2,8). Our finding of an E. 
canadensis G8 tapeworm in a sheep in China should not 
only alert the local population to be aware of this patho-
gen but also contributes to the discussion concerning E. 
canadensis tapeworm taxonomy. Further research is re-
quired to determine the transmission dynamics of this 
pathogen and determine whether the domestic life cycle 
of E. canadensis G8 tapeworm (circulation through sheep 
and dogs) has been or is present.

Since 2017, a mandatory vaccination campaign of sheep 
and goats with the CE vaccine EG95 has been sponsored in 
high-prevalence areas of China because of China’s policy, 
the National Medium- and Long-Term Plan for Animal Dis-
ease Control (2012–2020) (9). However, EG95 was devel-
oped against the E. granulosus G1 tapeworm (10) and might 
not provide effective protection against the E. canadensis G8 
tapeworm. Our findings indicate the G8 tapeworm might be 
prevalent in sheep in China, suggesting a wider host range 
and geographic distribution (Appendix Table; Appendix Fig-
ure 2). Thus, we propose the need for increased surveillance 
of the E. canadensis G8 tapeworm in China and that integra-
tion of this pathogen into ongoing echinococcosis programs 
is essential for tapeworm prevention and control.
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Appendix Table. The host range and geographic distribution of Echinococcus canadensis tapeworm, 1992–2018 

Genotype 

Definitive 

hosts  Intermediate hosts Geographic distribution References 

E. canadensis 

G6/7 

Dog, wolf Camel, pig, cattle, 

goat, sheep, 

reindeer 

Mexico, Peru, Brazil, Chile, Argentina, Tunisia, Algeria, 

Libya, Namibia, Mauritania, Ghana, Egypt, Sudan, Ethiopia, 

Somalia, Kenya, South Africa, Spain, Portugal, Poland, 

Ukraine, Czechia, Austria, Hungary, Romania, Serbia, 

Russia, Vatican City State, Bosnia and Herzegovina, 

Slovakia, France, Lithuania, Italy, Turkey, Iran, Afghanistan, 

India, Nepal, Kazakhstan, Kyrgyzstan, China, Mongolia 

(1–15) 

E. canadensis 

G8 

Wolf Moose, elk, muskox, 

mule deer, sheep 

America, Canada, Estonia, Latvia, Russia, China 

E. canadensis 

G10 

Dog, wolf Moose, elk, 

reindeer, mule deer, 

yak 

Finland, Mongolia, America, Canada, Estonia, Latvia, 

Sweden, Russia, China 
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Appendix Figure 1. Molecular identification of Echinococcus canadensis G8 tapeworm from sheep in 

China, 2018. A) The phylogenetic tree was constructed by using the Kimura 2-parameter model based on 

maximum-likelihood analysis by using the partial sequences of mitochondrial cox1 gene inferred from 

isolates of Echinococcus spp. Echinococcus oligarthrus was used as an outgroup. The maximum-

likelihood tree was constructed by using MEGA7.0 (https://www.megasoftware.net). The bootstrap values 

>50% are shown for the nodes that appeared along the branches with 1,000 replicates. Most 

Echinococcus isolates used in this study represent the Echinococcus granulosus G1 or G3 clusters (data 

not shown), whereas 1 isolate (XN1, MK303597) from a sheep was identified as Echinococcus 

canadensis G8-like tapeworm and named after its host, Sheep-XN (shown in red). B) To further identify 

the genotype of Sheep-XN, the full-length cox1 gene (1,608 bp) together with the complete mitochondrial 

nad1 gene (894 bp) were amplified and concatenated to produce a robust maximum-likelihood tree by 

using the Kimura 2-parameter method. The bootstrap values >50% are shown for the nodes that 

appeared along the branches with 1,000 replicates. Taenia solium was used as the outgroup. These 
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results consistently showed that the genotype of Sheep-XN isolate is E. canadensis G8 tapeworm. C) 

Hydatid cyst on the sheep infected with Sheep-XN. XN, Xining. 

 

 

 

Appendix Figure 2. Global distribution of Echinococcus canadensis tapeworms based on mitochondrial 

data, with indications of intermediate host affiliation and emphasis on Echinococcus canadensis G8 

tapeworm from sheep in China, 2018. The size of China is enlarged for easier visualization. The presence 

of Echinococcus canadensis G8 tapeworm in sheep from Xining (shown in red), located on the Qinghai-

Tibet Plateau of China, suggests a wider intermediate host range and geographic distribution than 

previously acknowledged. 


