Identification of Internationally Disseminated Ceftriaxone-Resistant Neisseria gonorrhoeae Strain FC428, China

Shao-Chun Chen, Yan Han, Liu-Feng Yuan, Xiao-Yu Zhu, Yue-Ping Yin

Author affiliations: Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China (S.-C. Chen, Y. Han, X.-Y. Zhu, Y.-P. Yin); Chinese Center for Disease Control and Prevention, Nanjing (S.-C. Chen, Y. Han, X.-Y. Zhu, Y.-P. Yin); Beijing Ditan Hospital Capital Medical University, Beijing, China (L.-F. Yuan)

DOI: https://doi.org/10.3201/eid2507.190172

Ceftriaxone has been used to treat gonorrhea in China and most other countries for >1 decade, but the level of decreased susceptibility or clinical resistance to ceftriaxone has increased (1). Moreover, the international spread of ceftriaxone-resistant clones has been recognized as a threat to effective control of gonorrhea (2). We describe an imported ceftriaxone-resistant N. gonorrhoeae strain isolated in China in 2016.

The patient was a heterosexual man in his late twenties. He reported unprotected 1-night heterosexual sex in Beijing in July 2016. Urethral discharge with dysuria occurred 3 days after the sexual activity. He was prescribed oral cephalosporin when he visited a private clinic in July. Because the urethral discharge did not resolve, he visited the sexually transmitted diseases clinic in Beijing Ditan Hospital (Beijing, China) in August.

Laboratory analysis of a urethral swab sample found gram-negative diplococci within leukocytes. Culture and nucleic acid amplification test were positive for N. gonorrhoeae. Screening for other sexually transmitted infections by nucleic acid amplification test was negative for Chlamydia trachomatis, Ureaplasma urealyticum, and Mycoplasma hominis.

The patient was treated with a 1-g intravenous dose of ceftriaxone once per day for 3 days. His symptoms improved after 3 days, and a test-of-cure by culture showed

References

Address for correspondence: Michele A. Miller, Stellenbosch University DST-NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, PO Box 241, Cape Town 8000, South Africa; email: miller@sun.ac.za
the treatment was successful. A telephone follow-up after 1 month indicated a lack of urethral discharge, and the patient provided information that his female sexual partner worked in a nightclub and had sexual contact with men from foreign countries.

The bacterial isolate was transferred to the reference laboratory at the National Center for Sexually Transmitted Disease Control, Chinese Center for Disease Control and Prevention (Nanjing, China). Gram staining and a carbohydrate utilization test confirmed *N. gonorrhoeae*. We confirmed antimicrobial susceptibilities to ceftriaxone, cefixime, spectinomycin, azithromycin, ciprofloxacin, and tetracycline for this isolate by using the agar dilution method. The strain was resistant to ceftriaxone (MIC 0.5 mg/L), cefixime (MIC 1 mg/L), tetracycline (4 mg/L), and ciprofloxacin (>32 mg/L) and susceptible to azithromycin (MIC 0.25 mg/L) and spectinomycin (MIC 16 mg/L) in accordance with the European Committee on Antimicrobial Susceptibility Testing protocol (http://www.eucast.org/clinical_breakpoints).

We performed *N. gonorrhoeae* multiantigen sequence typing (NG-MAST) (3) and multilocus sequence typing (MLST) (4) to identify the sequence types (STs). The MLST type was ST1903, and the NG-MAST type was ST3435. We used *N. gonorrhoeae* sequence typing for antimicrobial resistance (NG-STAR) (5) to identify the characteristics of resistance determinants. The NG-STAR type was ST233, which contains a type 60 mosaic penA allele (penA 60.001), -35A Del in the mtrR promoter (mtrR1), G120K-A121D in PorB (PorB8), L421P in PonA (PonA1), S91F-D95A in GyrA (GyrA7), S87R in ParC (ParC3), and wild-type 23srRNA (23 srRNA0).

The genotype (MLST1903/NG-MAST3435/NG-STAR233) of this isolate was identical to the 2 ceftriaxone-resistant *N. gonorrhoeae* (FC428 and FC460) isolated in 2015 in Japan (6) and similar to other resistant strains isolated in 2017 in Denmark (7), Canada (8), and Australia (9) (Table). Type 60 mosaic PenA (penA 60.001), which contained A311V and T483S alterations, was the key ceftriaxone resistance mutation and typical of this internationally disseminated resistant clone.

The timeline and epidemiologic data of all previous reports of the infections suggest this clone originated in Japan in 2015 and was disseminated to China, Denmark, Canada, and Australia afterward. Moreover, this resistant clone may have a fitness advantage over previously reported “superbug” H041 and has successfully spread worldwide (9). Accordingly, enhancing international collaborative surveillance on the ceftriaxone-resistant clone is crucial.

In conclusion, we identified a ceftriaxone-resistant *N. gonorrhoeae* strain that has sustainably transmitted in several countries for ≈3 years. These findings indicate an imported risk and a further transmission of resistant clones in China and demonstrate the need for enhanced local and global gonococcal antimicrobial surveillance to track the emergence and dissemination of resistant strains for timely control of spread (10).

Acknowledgments
We are grateful to Beijing Ditan Hospital, a member of China’s Gonococcal Resistance Surveillance Program, for providing the isolate and making the study possible. We thank William Shafer for his valuable comments.

This study was supported by a grant from the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2016-I2M-3-021) and the Jiangsu Natural Science Foundation (BK20171133).

About the Author
Dr. Chen is an associate professor at the National Center for STD Control, Chinese Center for Disease Control and Prevention. His primary research interests include molecular epidemiology and the antimicrobial resistance mechanism of *N. gonorrhoeae*.

Table. Antimicrobial susceptibility and molecular characteristics of ceftriaxone-resistant *Neisseria gonorrhoeae*, China

<table>
<thead>
<tr>
<th>Strains</th>
<th>Year</th>
<th>Country (reference)</th>
<th>Sexual contact history</th>
<th>MIC, mg/L</th>
<th>TET</th>
<th>SPT</th>
<th>CRO</th>
<th>CIP</th>
<th>AZI</th>
<th>CEF</th>
<th>MLST</th>
<th>porB</th>
<th>tbpB</th>
<th>NG-MAST</th>
<th>penA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan-FC428</td>
<td>2015</td>
<td>Japan (6)</td>
<td>NA</td>
<td>0.5</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>21</td>
<td>3435</td>
<td>60</td>
<td>233</td>
</tr>
<tr>
<td>Japan-FC460</td>
<td>2015</td>
<td>Japan (6)</td>
<td>NA</td>
<td>0.5</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>21</td>
<td>3435</td>
<td>60</td>
<td>233</td>
</tr>
<tr>
<td>China-BJ16148</td>
<td>2016</td>
<td>China (this study)</td>
<td>China</td>
<td>4</td>
<td>16</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>21</td>
<td>3435</td>
<td>60</td>
<td>233</td>
</tr>
<tr>
<td>Denmark-GK124</td>
<td>2017</td>
<td>Denmark, China, Australia</td>
<td>NA</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.5</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>33</td>
<td>1614</td>
<td>60</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Canada-47707</td>
<td>2017</td>
<td>Canada (8)</td>
<td>China, Thailand</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>>32</td>
<td>0.5</td>
<td>2</td>
<td>1903</td>
<td>1053</td>
<td>33</td>
<td>1614</td>
<td>60</td>
<td>233</td>
</tr>
<tr>
<td>Australia-A7846</td>
<td>2017</td>
<td>Australia (9)</td>
<td>Cambodia, Philippines</td>
<td>2</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>NA</td>
<td>1903</td>
<td>1053</td>
<td>33</td>
<td>1614</td>
<td>60</td>
<td>233</td>
</tr>
<tr>
<td>Australia-A7536</td>
<td>2017</td>
<td>Australia (9)</td>
<td>China</td>
<td>4</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>NA</td>
<td>1903</td>
<td>9300</td>
<td>21</td>
<td>15925</td>
<td>60</td>
<td>233</td>
</tr>
</tbody>
</table>

*AZI, azithromycin; CEF, cefixime; CIP, ciprofloxacin; CRO, ceftriaxone; MLST, multilocus sequence typing; NA, not available; NG-MAST, *N. gonorrhoeae* multiantigen sequence typing; NG-STAR, *N. gonorrhoeae* sequence typing for antimicrobial resistance; SPT, spectinomycin; TET, tetracycline.
Disseminated Metacestode
Versteria Species Infection in
Woman, Pennsylvania, USA

Bethany Lehman, Sixto M. Leal, Jr.,
Gary W. Procop, Elise O’Connell,
Jahangheer Shaik, Theodore E. Nash,
Thomas B. Nutman, Stephen Jones,
Stephanie Braunthal, Shetal N. Shah,
Michael W. Cruise, Sanjay Mukhopadhyay,
Jona Banzon

Author affiliations: Cleveland Clinic Foundation, Cleveland, Ohio,
USA (B. Lehman, G.W. Procop, S. Jones, S. Braunthal,
S.N. Shah, M.W. Cruise, S. Mukhopadhyay, J. Banzon); University
of Alabama Medical Center, Tuscaloosa, Alabama, USA
(S.M. Leal, Jr.); National Institutes of Health, Bethesda, Maryland,
USA (E. O’Connell, J. Shaik, T.E. Nash, T.B. Nutman)

DOI: https://doi.org/10.3201/eid2507.192023

A patient in Pennsylvania, USA, with common variable immuno
deficiency sought care for fever, cough, and abdomi
nal pain. Imaging revealed lesions involving multiple organs.
Liver resection demonstrated necrotizing granulomas, rec
ognizable tegument, and calcareous corpuscles indicative
of an invasive cestode infection. Sequencing revealed 98%
identity to a Versteria species of cestode found in mink.

In July 2017, a 68-year-old woman in Pennsylvania,
USA, sought care for fever, fatigue, cough, and abdomi
nal pain. Her medical history was significant for common
variable immunodeficiency and splenic B cell lymphoma
that had been treated with R-CHOP (rituximab, cyclophos
phamide, hydroxydaunorubicin, vincristine, and predni
sone); treatment was completed in December 2016.

Imaging showed extensive nodular disease of the lungs
and liver and a hepatic abscess. Examination of a fine-nee
dle aspirate of the hepatic lesion detected hepatocytes with
focal atypia on a background of marked acute inflamma
tion and necrosis, suggestive of an active infectious pro
cess. Subsequent percutaneous needle biopsy samples of
the liver, bronchoalveolar lavage and transbronchial biopsy
samples, and surgical biopsy samples of the left lower lobe
showed necrotizing granulomas and reactive/reparative
tissue changes. All histochemically stained slides (Gomori
methenamine silver, Gram, periodic acid Schiff, Warthin
Starry, Ziehl-Neelsen, Fite) yielded negative results for
microorganisms. Results of broad-range PCR for bacteria

References

Susceptibility of Neisseria gonorrhoeae to azithromycin and
ceftriaxone in China: a retrospective study of national surveillance
http://dx.doi.org/10.1371/journal.pmed.1002499

2. Chen SC, Yin YP, Chen XS. Cephalosporin-resistant Neisseria
http://dx.doi.org/10.3201/eid2404.171817

3. Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG.
Rapid sequence-based identification of gonococcal transmission
clusters in a large metropolitan area. J Infect Dis. 2004;189:
1497–505. http://dx.doi.org/10.1086/383047

4. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial
genome variation at the population level. BMC Bioinformatics.

5. Demczuk W, Sidhu S, Unemo M, Whiley DM, Allen VG,
Dillon JR, et al. Neisseria gonorrhoeae sequence typing for
antimicrobial resistance, a novel antimicrobial resistance
multilocus typing scheme for tracking global dissemination of
http://dx.doi.org/10.1128/JCM.00100-17

6. Nakayama S, Shimuta K, Furubayashi K, Kawahata T, Unemo M,
Ohnishi M. New ceftriaxone- and multidrug-resistant Neisseria
gonorrhoeae strain with a novel mosaic pen1 gene isolated in
http://dx.doi.org/10.1128/AAC.00504-16

7. Terkelson D, Tolstrup J, Johnsen CH, Lund O, Larsen HK,
Worning P, et al. Multidrug-resistant Neisseria gonorrhoeae
infection with ceftriaxone resistance and intermediate resistance to
http://dx.doi.org/10.2807/1560-7917.ES.2017.22.42.17-00659

8. Lefebvre B, Martin I, Demczuk W, Deshaies L, Michaud S,
Labbé AC, et al. Ceftriaxone-resistant Neisseria gonorrhoeae,
10.3201/eid2402.171756

9. Lahra MM, Martin I, Demczuk W, Jennisom AV, Lee KI,
disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain.
edi2404.171873

10. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P,
et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global
surveillance and a call for international collaborative action.
journal.pmed.1002344

Address for correspondence: Yue-Ping Yin, National Center for STD
Control, China CDC—Reference Laboratory, 12 Jiangwangmiao St,
Nanjing, Jiangsu 210042 China; email: yinyp@ncstdlc.org

1This manuscript was originally presented at the Infectious
Disease Society of America IDWeek 2018; October 3–7, 2018;
San Francisco, CA, USA.