Ceftriaxone has been used to treat gonorrhea in China and most other countries for >1 decade, but the level of decreased susceptibility or clinical resistance to ceftriaxone has increased (1). Moreover, the international spread of ceftriaxone-resistant clones has been recognized as a threat to effective control of gonorrhea (2). We describe an imported ceftriaxone-resistant N. gonorrhoeae strain isolated in China in 2016.

The patient was a heterosexual man in his late twenties. He reported unprotected 1-night heterosexual sex in Beijing in July 2016. Urethral discharge with dysuria occurred 3 days after the sexual activity. He was prescribed oral cephalosporin when he visited a private clinic in July. Because the urethral discharge did not resolve, he visited the sexually transmitted diseases clinic in Beijing Ditan Hospital in August.

Laboratory analysis of a urethral swab sample found gram-negative diplococci within leukocytes. Culture and nucleic acid amplification test were positive for N. gonorrhoeae. Screening for other sexually transmitted infections by nucleic acid amplification test was negative for Chlamydia trachomatis, Ureaplasma urealyticum, and Mycoplasma hominis.

The patient was treated with a 1-g intravenous dose of ceftriaxone once per day for 3 days. His symptoms improved after 3 days, and a test-of-cure by culture showed

References

the treatment was successful. A telephone follow-up after 1 month indicated a lack of urethral discharge, and the patient provided information that his female sexual partner worked in a nightclub and had sexual contact with men from foreign countries.

The bacterial isolate was transferred to the reference laboratory at the National Center for Sexually Transmitted Disease Control, Chinese Center for Disease Control and Prevention (Nanjing, China). Gram staining and a carbohydrate utilization test confirmed *N. gonorrhoeae*. We confirmed antimicrobial susceptibilities to ceftriaxone, cefixime, spectinomycin, azithromycin, ciprofloxacin, and tetracycline for this isolate by using the agar dilution method. The strain was resistant to ceftriaxone (MIC 0.5 mg/L), cefixime (MIC 1 mg/L), tetracycline (4 mg/L), and ciprofloxacin (>32 mg/L) and susceptible to azithromycin (MIC 0.25 mg/L) and spectinomycin (MIC 16 mg/L) in accordance with the European Committee on Antimicrobial Susceptibility Testing protocol (http://www.eucast.org/clinical_breakpoints).

We performed *N. gonorrhoeae* multiantigen sequence typing (NG-MAST) (3) and multilocus sequence typing (MLST) (4) to identify the sequence types (STs). The MLST type was ST1903, and the NG-MAST type was ST3435. We used *N. gonorrhoeae* sequence typing for antimicrobial resistance (NG-STAR) (5) to identify the characteristics of resistance determinants. The NG-STAR type was ST233, which contains a type 60 mosaic penA allele (penA 60.001), -35A Del in the mtrR promoter (mtrR1), G120K-A121D in PorB (PorB8), L421P in PonA (PonA1), S91F-D95A in GyR (GyrA7), S87R in ParC (ParC3), and wild-type 23srRNA (23 srRNA0).

The genotype (MLST1903/NG-MAST3435/NG-STAR233) of this isolate was identical to the 2 ceftriaxone-resistant *N. gonorrhoeae* (FC428 and FC460) isolated in 2015 in Japan (6) and similar to other resistant strains isolated in 2017 in Denmark (7), Canada (8), and Australia (9) (Table). Type 60 mosaic PenA (penA 60.001), which contained A311V and T483S alterations, was the key ceftriaxone resistance mutation and typical of this internationally disseminated resistant clone.

The timeline and epidemiologic data of all previous reports of the infections suggest this clone originated in Japan in 2015 and was disseminated to China, Denmark, Canada, and Australia afterward. Moreover, this resistant clone may have a fitness advantage over previously reported “superbug” H041 and has successfully spread worldwide (9). Accordingly, enhancing international collaborative surveillance on the ceftriaxone-resistant clone is crucial.

In conclusion, we identified a ceftriaxone-resistant *N. gonorrhoeae* strain that has sustainably transmitted in several countries for ≈3 years. These findings indicate an imported risk and a further transmission of resistant clones in China and demonstrate the need for enhanced local and global gonococcal antimicrobial surveillance to track the emergence and dissemination of resistant strains for timely control of spread (10).

Table. Antimicrobial susceptibility and molecular characteristics of ceftriaxone-resistant *Neisseria gonorrhoeae*, China*

<table>
<thead>
<tr>
<th>Strains</th>
<th>Year</th>
<th>Country (reference)</th>
<th>Sexual contact history</th>
<th>MIC, mg/L</th>
<th>TET</th>
<th>SPT</th>
<th>CRO</th>
<th>CIP</th>
<th>AZI</th>
<th>CEF</th>
<th>MLST</th>
<th>porB</th>
<th>tbpB</th>
<th>NG-MAST</th>
<th>penA</th>
<th>NG-STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan-FC428</td>
<td>2015</td>
<td>Japan (6)</td>
<td>NA</td>
<td>0.5</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>21</td>
<td>3435</td>
<td>60</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Japan-FC460</td>
<td>2015</td>
<td>Japan (6)</td>
<td>NA</td>
<td>0.5</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>21</td>
<td>3435</td>
<td>60</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>China-BJ16148</td>
<td>2016</td>
<td>China (this study)</td>
<td>China</td>
<td>4</td>
<td>16</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>21</td>
<td>3435</td>
<td>60</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Denmark-GK124</td>
<td>2017</td>
<td>Denmark, China, Australia</td>
<td>NA</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.5</td>
<td>1</td>
<td>1903</td>
<td>1053</td>
<td>33</td>
<td>1614</td>
<td>60</td>
<td>233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada-47707</td>
<td>2017</td>
<td>Canada (8)</td>
<td>China, Thailand</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>>32</td>
<td>0.5</td>
<td>2</td>
<td>1903</td>
<td>1053</td>
<td>33</td>
<td>1614</td>
<td>60</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Australia-A7846</td>
<td>2017</td>
<td>Australia (9)</td>
<td>Cambodia, Philippines</td>
<td>2</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>NA</td>
<td>1903</td>
<td>1053</td>
<td>33</td>
<td>1614</td>
<td>60</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Australia-A7536</td>
<td>2017</td>
<td>Australia (9)</td>
<td>China</td>
<td>4</td>
<td>8</td>
<td>0.5</td>
<td>>32</td>
<td>0.25</td>
<td>NA</td>
<td>1903</td>
<td>9300</td>
<td>21</td>
<td>15925</td>
<td>60</td>
<td>233</td>
<td></td>
</tr>
</tbody>
</table>

*AZI, azithromycin; CEF, cefixime; CIP, ciprofloxacin; CRO, ceftriaxone; MLST, multilocus sequence typing; NA, not available; NG-MAST, *N. gonorrhoeae* multiantigen sequence typing; NG-STAR, *N. gonorrhoeae* sequence typing for antimicrobial resistance; SPT, spectinomycin; TET, tetracycline.

Acknowledgments

We are grateful to Beijing Ditan Hospital, a member of China’s Gonococcal Resistance Surveillance Program, for providing the isolate and making the study possible. We thank William Shafer for his valuable comments.

This study was supported by a grant from the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2016-I2M-3-021) and the Jiangsu Natural Science Foundation (BK20171133).

About the Author

Dr. Chen is an associate professor at the National Center for STD Control, Chinese Center for Disease Control and Prevention. His primary research interests include molecular epidemiology and the antimicrobial resistance mechanism of *N. gonorrhoeae*.
Disseminated Metacestode Versteria Species Infection in Woman, Pennsylvania, USA

Bethany Lehman, Sixto M. Leal, Jr., Gary W. Procop, Elise O’Connell, Jahangheer Shaik, Theodore E. Nash, Thomas B. Nutman, Stephen Jones, Stephanie Braanthal, Shetal N. Shah, Michael W. Cruise, Sanjay Mukhopadhyay, Jona Banzon

Author affiliations: Cleveland Clinic Foundation, Cleveland, Ohio, USA (B. Lehman, G.W. Procop, S. Jones, S. Braanthal, S.N. Shah, M.W. Cruise, S. Mukhopadhyay, J. Banzon); University of Alabama Medical Center, Tuscaloosa, Alabama, USA (S.M. Leal, Jr.); National Institutes of Health, Bethesda, Maryland, USA (E. O’Connell, J. Shaik, T.E. Nash, T.B. Nutman)

DOI: https://doi.org/10.3201/eid2507.190223

A patient in Pennsylvania, USA, with common variable immunodeficiency sought care for fever, cough, and abdominal pain. Imaging revealed lesions involving multiple organs. Liver resection demonstrated necrotizing granulomas, recognizable tegument, and calcareous corpuscles indicative of an invasive cestode infection. Sequencing revealed 98% identity to a Versteria species of cestode found in mink.

In July 2017, a 68-year-old woman in Pennsylvania, USA, sought care for fever, fatigue, cough, and abdominal pain. Her medical history was significant for common variable immunodeficiency and splenic B cell lymphoma that had been treated with R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone); treatment was completed in December 2016.

Imaging showed extensive nodular disease of the lungs and liver and a hepatic abscess. Examination of a fine-needle aspirate of the hepatic lesion detected hepatocytes with focal atypia on a background of marked acute inflammation and necrosis, suggestive of an active infectious process. Subsequent percutaneous needle biopsy samples of the liver, bronchoalveolar lavage and transbronchial biopsy samples, and surgical biopsy samples of the left lower lobe showed necrotizing granulomas and reactive/reparative tissue changes. All histochemically stained slides (Gomori-methenamine silver, Gram, periodic acid Schiff, Warthin-Starry, Ziehl-Neelsen, Fite) yielded negative results for microorganisms. Results of broad-range PCR for bacteria

1This manuscript was originally presented at the Infectious Disease Society of America IDWeek 2018; October 3–7, 2018; San Francisco, CA, USA.