Acknowledgments
We thank Shneh Sethi for helpful advice and Sabrina Mündlein, Grit Mrotzek, and Ahmad Saleh for excellent technical assistance.

The German National Reference Center NRZMyk is funded by the Robert Koch Institute from funds provided by the German Ministry of Health (grant no. 1369-240). Calculations were performed on the Freiburg Galaxy server using computing services provided by the Center of Genetic Epidemiology (Danish Technical University, Lyngby, Denmark). The Freiburg Galaxy project is supported by the Collaborative Research Centre 992 Medical Epigenetics (DFG grant no. SFB 992/1 2012) and German Federal Ministry of Education and Research (BMBF grant no. 031 A538A). T.D. acknowledges support by the Deutsche Forschungsgemeinschaft (project no. 210879364–TRR 124/B1).

About the Author
Dr. Hamprecht is a clinical microbiologist at the Institute for Medical Microbiology, Immunology and Hygiene and professor for antibiotic resistance of gram-negative pathogens at the University of Cologne, Germany, and the German Centre for Infection Research (DZIF), also in Cologne. His research interests include multidrug-resistant organisms (mainly Enterobacteriales and fungi), their resistance mechanisms, and the improvement of diagnostic methods.

References

Address for correspondence: Oliver Kurzai, University of Würzburg Institute for Hygiene and Microbiology, Josef-Schneider-Straße 2 / E1, Würzburg 97080, Germany; email: okurzai@hygiene.uni-wuerzburg.de

Characterization of Clinical Isolates of Talaromyces marneffei and Related Species, California, USA
Linlin Li, Katelyn Chen, Nirmala Dhungana, Yvonne Jang, Vishnu Chaturvedi,1 Ed Desmond2

Author affiliation: California Department of Public Health, Richmond, California, USA
DOI: https://doi.org/10.3201/eid2509.190380

Talaromyces marneffei and other Talaromyces species can cause opportunistic invasive fungal infections. We characterized clinical Talaromyces isolates from patients in California, USA, a non–Talaromyces-endemic area, by a multiphasic approach, including multigene phylogeny, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and phenotypic methods. We identified 10 potentially pathogenic Talaromyces isolates, 2 T. marneffei.

1Current affiliation: New York State Department of Health, Albany, New York, USA.
2Current affiliation: Hawaii State Department of Health, Pearl City, Hawaii, USA.
Talaromyces marneffei is a dimorphic fungal pathogen that causes focal or systemic infection in immunocompromised persons, primarily HIV-infected patients (1). Many cases have been reported in travelers returning from areas of Southeast Asia, southern China, and eastern India to which it is endemic. Other Talaromyces species also have been reported to cause invasive fungal infections, including T. amestolkiae (2), T. purpurogenus (3,4), and T. piceus (5,6). Talaromyces species are common in air, soil, and human habitats. Clinical laboratories in areas to which this fungus is not endemic often do not perform identification of T. marneffei and other Talaromyces species (2). Therefore, we devised a multiphasic approach for identifying T. marneffei and other potentially pathogenic Talaromyces species.

We conducted this study during 2018. Talaromyces isolates from 10 human specimens were submitted to the Microbial Diseases Laboratory (MDL), California Department of Public Health (Richmond, CA, USA), to rule out T. marneffei (Appendix, https://wwwnc.cdc.gov/EID/article/25/9/19-0380-App1.pdf). Temperature and pH are known to influence pigment production and colony morphology of Talaromyces species; therefore, growth characteristics were observed using 2 different culture media (Sabouraud dextrose agar, pH 5.6; and Sabouraud dextrose agar, pH 6.9), incubated at 25°C and 30°C. Fungal DNA was extracted using a previously reported method (7). Talaromyces isolates were identified to species level using the internal transcribed spacer (ITS) region, partial ß-tubulin gene (BenA), and partial RNA polymerase II largest subunit gene (RPB1) (8). The ITS and partial BenA and RPB1 sequences were used to search for homologies in GenBank and CBS databases (http://www.westerdijk institute.nl/collections). Multigene phylogenetic analysis was conducted on the concatenated ITS–BenA–RPB1 nucleotide sequence alignment (Appendix). A blastn search (https://blast.ncbi.nlm.nih.gov/blast) through the GenBank database, pairwise comparison alignment through the CBS database, or both showed 99%–100% homology for ITS, 97%–100% for BenA, and 91%–100% for RPB1 sequences with the best-matched sequences of known Talaromyces species isolates.

Phylogenetic analysis of the Talaromyces isolates showed 7 genetic clades, consistent with previous descriptions of the Talaromyces genera (9) (Figure). Species identification using a comparison of the ITS, BenA, and RPB1 sequences with existing sequences and multigene phylogenetic analysis identified T. marneffei (isolates MDL17022 and MDL18026), T. atroroseus (MDL17026, MDL17144, MDL17164, and MDL18070), T. islandicus (MDL18167), T. stollii (MDL18054), T. coalescens (MDL18102), and T. australis (MDL18159). The 2 T. marneffei isolates produced diffuse red pigment early, by 3 days of growth, on both medium types and at both incubation temperatures. T. australis and T. stollii isolates also produced red pigment by 3 days but with variations based on media or temperature. At 7 days of growth, the 4 T. atroroseus isolates also showed variable red pigment production (abundant, weak, and absent) (Appendix). Microscopically, most isolates showed biverticillate conidiophores and globose to fusiform conidia in unbranched chains. Both T. marneffei isolates were from HIV-positive patients. MDL17022 was from a blood sample of a 37-year-old man with a travel history to Southeast Asia; MDL18026 was from skin tissue of a 36-year-old man with no available travel history.

Using matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry, we generated main spectrum profiles (MSP) of Talaromyces species following Bruker’s custom MSP and library creation standard operating procedure (https://www.bruker.com). We extracted proteins of Talaromyces isolates using the previously published National Institutes of Health (NIH) protocol (10). We analyzed Talaromyces spectra with MALDI Biotyper 4.1 software against combined databases of the Filamentous Fungi Library 2.0 (Bruker) and the NIH Mold Library (10), with and without inclusion of newly created MSPs of Talaromyces species (Appendix).

Using the combined databases of Filamentous Fungi Library 2.0 (Bruker) and NIH Mold Library, we identified none of the isolates to species level; results showed either no identification or genus-level identification. However, when we expanded the combined database with the MDL Mold Library, we correctly identified all Talaromyces isolates to the species level with the best score ≥1.9. There were no ambiguous identification results; that is, the second-best matched species also had a high confidence score ≥1.9.

T. marneffei can be readily differentiated from other red pigment–producing Talaromyces species by yeast-like colony conversion at 37°C. However, many clinical laboratories no longer conduct yeast conversions. For those laboratories, yellow-green colonies producing red soluble pigment at ≈3 days on common fungal culture media at 25°C–30°C might indicate the need to further confirm T. marneffei. It is difficult to distinguish Talaromyces species only by macroscopic and microscopic examination. Multilocus sequencing, although confirmatory, might be too time-consuming and expensive for routine use. Therefore, we identified all Talaromyces isolates to species level by MALDI-TOF mass spectrometry by using an expanded database with well-characterized Talaromyces strains.

In conclusion, our results show that MALDI-TOF mass spectrometry is a good choice for rapid, less expensive primary identification of Talaromyces species and other medically important fungal pathogens. Species-level
identification of Talaromyces isolates is clinically useful for treatment of patients with underlying conditions, such as immunodeficiency, cancer, advanced age, and immunosuppressive therapy.

Acknowledgments
We thank Zenda Berrada for her support and helpful suggestions on this study.

The Microbial Diseases Laboratory at the California Department of Public Health provided funding for this study.

About the Author
Dr. Li is a research scientist and a certified public health microbiologist at the Microbial Diseases Laboratory, California Department of Public Health. Her primary research interests include molecular diagnosis of mycotic diseases, Valley fever, candidemia, antifungal susceptibility testing, mycobacteriology, metagenomics, and next-generation sequencing.

References
Parathyridaria percutanea and Subcutaneous Phaeohyphomycosis

Shivaprakash M. Rudramurthy,¹ Megha Sharma,¹ Nandini Sethuraman, Pinaki Dutta, Bansidhar Tarai, Jayanthi Savio, Amanjit Bal, Usha Kalawat, Arunaloke Chakrabarti

Author affiliations: Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.M. Rudramurthy, M. Sharma, N. Sethuraman, P. Dutta, A. Bal, A. Chakrabarti); Apollo Hospitals, Chennai, India (N. Sethuraman); Max Super Specialty Hospitals, New Delhi, India (B. Tarai); St. Johns Medical College and Research Institute, Bengaluru, India (J. Savio); Sri Venkateshwara Institute of Medical Sciences, Tirupati, India (U. Kalawat)

DOI: https://doi.org/10.3201/eid2509.190383

Parathyridaria percutanea is an emerging fungus causing subcutaneous phaeohyphomycoses in renal transplant recipients in India. We identified *P. percutanea* from a patient with subcutaneous phaeohyphomycosis. From our culture collection, we identified the same fungus from 4 similar patients. We found 5 cases previously described in literature.

¹These first authors contributed equally to this article.

Parathyridaria percutanea, earlier known as *Roussoella percutanea* in the order Pleosporales, has been reported to cause subcutaneous phaeohyphomycoses (1,2). *P. percutanea* belongs to coelomycetes, a group of fungi in which the conidia or asexual propagules lie within a cavity. *Parathyridaria* spp. generally exist as plant saprobes; *P. percutanea* is the only species reported as an opportunistic pathogen.

We recently observed a case of subcutaneous phaeohyphomycosis caused by *P. percutanea*. The patient was a 33-year-old man who had ACTH-dependent Cushing’s disease with 2 cutaneous lesions, one under the left axilla and the other on the upper aspect of the left forearm, that had progressed slowly over 3 years (Appendix Figure 1, panel A, https://wwwnc.cdc.gov/EID/article/25/9/19-0383-App1.pdf). Direct microscopy of a biopsy sample taken from the left forearm lesion revealed dematiaceous septate hyphae with irregular hyphal swellings (Appendix Figure 1, panel B). Colonies on Sabouraud’s dextrose agar at 25°C were flat, spreading with sparse aerial hyphae after 1 week, and later turned to cottony greenish-black growth (Appendix Figure 1, panel C). Lactophenol cotton blue mount revealed nonsporulating dematiaceous hyphae with chlamydothecia (Appendix Figure 1, panel D). Several attempts to induce sporulation (on oatmeal agar and malt extract agar) failed. Histopathologic examination (Appendix Figure 1, panels E–G) showed neutrophilic infiltration with fungal hyphae, nodular swellings on Giemsa stain, and black hyphae on Grocott-Gomori’s methamine silver stain.

We identified the fungus as *Roussoella percutanea* of the order Pleosporales, later renamed *P. percutanea*, by PCR sequencing of the internal transcribed spacer (ITS) and 28S regions of ribosomal DNA, as described previously (3). ITS sequencing of our strain NCCPF104001 (GenBank accession nos. MG708109 [by ITS] and MG708116 [by 28S]) had 99.8% identity with CBS128203 (type strain, GenBank accession no. KF322117) and CBS868.95 (GenBank accession no. KF322118), whereas 28S sequences had 100% identity with CBS128203 (GenBank accession no. KF366448) and CBS868.95 (GenBank accession no. KF366449) (Appendix Figure 2, panels A-B). The patient refused further treatment in the hospital and left against medical advice.

We screened all the isolates deposited in our National Culture Collection of Pathogenic Fungi (NCCPF, Chandigarh) and characterized them phenotypically as Pleosporales. Of 7 such isolates, we identified 4 as *P. percutanea* by sequencing (Table, https://wwwnc.cdc.gov/EID/article/25/9/19-0383-T1.htm). We further subjected these isolates to phylogenetic analysis of ITS and large ribosomal subunit (28S) of the rDNA using MEGA software version 6 (https://megasoftware.net) (3). The strains identified as *P. percutanea* clustered together with the ITS and 28S sequences of CBS12608 and CBS868.95 strains, the other 2 *P. percutanea*