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Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) appeared in Wuhan, China, during 

December 2019, and coronavirus disease (COVID-19) 
caused by this virus was declared a pandemic on 
March 11, 2020, by the World Health Organization 
(1). As of June 24, a total of 193 countries, areas, or 
territories had reported 9,129,146 confirmed COV-
ID-19 cases and 473,797 deaths. Substantial outbreaks 
have occurred in India, Russia, Brazil, and the United 

States; the United States has the highest cumulative 
confirmed number of cases and deaths (2).

The United States reported its first imported 
SARS-CoV-2 case from Wuhan on January 20, in 
Washington (3), 6 days ahead of California (4) and 40 
days ahead of New York, New York (5); the first local-
ly infected cases were reported on February 28 (6). As 
of June 24, all 50 states  had reported confirmed cases, 
48 had reported community spread, and cumulative 
confirmed COVID-19 cases were 2,336,615 and deaths 
were 121,117 (7). Surges in COVID-19 hospitaliza-
tions have compromised local healthcare systems in 
New York (8) and Seattle (9).

Beginning in March 2020, states and cities im-
plemented extensive social distancing measures to 
contain the spread of SARS-CoV-2, including school 
closures, limits on mass gatherings, shelter-in-place 
orders, travel restrictions, and bans on nonessential 
commercial activities. By early April, 45 states had is-
sued a statewide shelter-in-place order or >1 city-lev-
el stay-at-home order, affecting >316 million persons. 
As of June 25, all measures have expired or relaxed 
(10). The timing of the orders varied; California was 
the first state to enact strict orders on March 19 and 
South Carolina the last on April 7 (10). These mea-
sures dramatically slowed the pace of the pandemic 
during April and May, but confirmed COVID-19 
cases and hospitalizations have been increasing since 
early June, particularly in Arizona, Florida, Texas, 
and California (11).

As COVID-19 emerged into a global threat, we 
took a national pandemic influenza model that was 
built through a pandemic preparedness contract with 
the Centers for Disease Control and Prevention (CDC; 
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Social distancing orders have been enacted worldwide 
to slow the coronavirus disease (COVID-19) pandemic, 
reduce strain on healthcare systems, and prevent deaths. 
To estimate the impact of the timing and intensity of such 
measures, we built a mathematical model of COVID-19 
transmission that incorporates age-stratified risks and 
contact patterns and projects numbers of hospitalizations, 
patients in intensive care units, ventilator needs, and 
deaths within US cities. Focusing on the Austin metropoli-
tan area of Texas, we found that immediate and extensive 
social distancing measures were required to ensure that 
COVID-19 cases did not exceed local hospital capacity by 
early May 2020. School closures alone hardly changed 
the epidemic curve. A 2-week delay in implementation 
was projected to accelerate the timing of peak healthcare 
needs by 4 weeks and cause a bed shortage in intensive 
care units. This analysis informed the Stay Home-Work 
Safe order enacted by Austin on March 24, 2020.
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Atlanta, GA, USA) and adapted it to model the spread 
and control of COVID-19 within and between 217 US 
cities. We used this model to project the potential ef-
fects of school closures coupled with social distanc-
ing, in terms of reducing cases, deaths, hospitaliza-
tions, intensive care unit (ICU) visits, and ventilator 
needs, on local, regional, and national scales. We have 
focused our analysis on Austin, which is the capital 
of Texas and the fastest growing city in the United 
States, as a representation of major US metropolitan 
areas. The scenarios and inputs (e.g., epidemiologic 
parameters) were determined in consultation with 
CDC and the Regional Healthcare System Executive 
Council of the Austin–Travis County Emergency Op-
erations Command.

Methods
We focused on the Austin–Round Rock Statistical 
Metropolitan Area, which had a population of 2.17 
million persons in 2018, but the qualitative findings 
and impact of social distancing will apply to cities 
throughout the United States. We analyzed a com-
partmental model that incorporates age-specific high 
risk proportions and contact rates to measure the ef-
fects of 2 key interventions, school closures and social 
distancing measures, which reduce nonhousehold 
contacts by a specified percentage. We estimated the 
effects of these measures on cases, hospitalizations, 
ICU visits, ventilator needs, and deaths.

We built a stochastic age- and risk-structured 
susceptible-exposed-asymptomatic-symptomatic-
hospitalized-recovered (SEAYHR) model of SARS-
CoV-2 transmission (Appendix  Figure 1, https://
wwwnc.cdc.gov/EID/article/26/10/20-1702-App1.
pdf). Persons were separated into 5 age groups, <1–4, 
5–17, 18–49, 50–64, and >65 years of age, on the basis 
of population data for the 5-county Austin–Round 
Rock Metropolitan Area from the 2017 American 
Community Survey (12). Each age group was divid-
ed into a low-risk and high-risk group on the basis 
of prevalence of chronic conditions estimated for the 
Austin population (Appendix  Figure 2) (13–16). We 
also estimated the proportion of pregnant women in 
each age group as a special risk class (17). All persons 
were assumed to be susceptible to the disease. Infect-
ed persons were modeled to enter a latent period in 
which they were symptom-free and not yet infectious 
(18) and then progressed to either a symptomatic 
or asymptomatic compartment, both infectious. As-
ymptomatic persons were assumed to have the same 
infectious period as symptomatic persons but lower 
infectiousness. The rates at which symptomatic case-
patients were moved to a hospitalized compartment 

and died depended on age and risk group. Recovered 
persons were considered fully immune. Deaths were 
assumed to occur after hospitalization. We provide a 
detailed description of the methods used (Appendix).

All model parameters (Appendix Tables 1–3) 
were based on published estimates from COVID-19 
studies, as well as input from CDC and Austin. We 
assumed a basic reproduction number (R0) of 2.2 (19) 
and considered 2 different doubling times, 7.2 days 
(low growth rate) (19–21) and 4 days (high growth 
rate) (22–24). We provide a sensitivity analysis for an 
R0 of 3.5 (Appendix). Age-specific contact rates were 
estimated by using contact matrices published by 
Prem et al. and are adjusted to model school closures 
and various levels of social distancing (25). Transmis-
sion rates were estimated by fitting simulations to a 
given R0 and epidemic doubling time. The latent pe-
riod (i.e., noninfectious beginning of the incubation 
period) was sampled from a triangular distribution 
from 1.9 days to 3.9 days and a mean of 2.9 days 
(26,27), and the infectious period was sampled from a 
triangular distribution from 5.3 days to 7.3 days and a 
mean of 6.3 days (27). We assumed that 43% of infec-
tions are asymptomatic and that asymptomatic cases 
are two thirds as infectious as symptomatic cases 
(28,29). Following planning scenarios of CDC, we as-
sumed that the infection hospitalization rate and in-
fection fatality rate was 10 times higher in high-risk 
than low-risk persons within each age group.

Simulations began with 5 imported symptom-
atic cases in the 18–49-year-old age group on March 
1, 2020, and were updated at 2.4-hour intervals. For 
each combination of epidemic scenarios (low/high 
growth rate) and intervention strategies (school clo-
sure policy with different levels of social distancing), 
we ran 100 stochastic simulations and reported the 
medians and 95% prediction intervals (ranges) at 
weekly intervals.

School Closure Policies
As part of a CDC modeling network, we initially 
modeled a large number of school closure policies, 
with variable implementation time and duration. 
To simulate school closures, we decreased the daily 
age-specific contact rates by the estimated number of 
contacts that occur within schools (25,30). The school-
specific contact numbers encompass all interactions 
among students and teachers occurring at all educa-
tional levels, from elementary schools through colleg-
es and universities. In our model, school closures re-
duced daily contacts by 15% for persons <1–4 years of 
age, 26% for persons 5–17 years of age, 9% for persons 
18–49 of age, 9% for persons 50–64 of age, and 2% for 
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persons >64 years of age. We reported only 2 of these 
strategies to demonstrate the effects of implementa-
tion time: closure immediately after the first con-
firmed case (March 14) and delayed closure 2 months 
after the first confirmed case (May 14). In both cases, 
we assumed that schools remain closed through the 
end of the summer vacation (August 18, 2020), which 
corresponds to a 23-week duration for the early clo-
sure and a 14-week duration for the late closure. The 
early closure scenario roughly corresponded to Aus-
tin announcing the first 2 confirmed cases on March 
13 and major school districts closing the next day. In 
our simulations, the median cumulative number of 
symptomatic COVID-19 cases by March 14th was 38 
(interquartile range [IQR] 27–53) and 14 (IQR 9–19), 
assuming a 4-day and 7-day doubling period, respec-
tively; by May 14, median cumulative symptomatic 
cases increased to 530,426 (IQR 114,151–783,667) and 
3,206 (IQR 561–7,611), respectively.

Social Distancing Measures
In addition to school closures, we considered the 
effect of various levels of social distancing that de-
creased nonhousehold contacts by 25%, 50%, 75%, 
and 90% overall. These levels were chosen to corre-
spond to increasingly more severe levels of restric-
tion on social interaction from limiting large crowds 
to near-total restriction on out-of-home movement 
except for healthcare and basic necessities.

Age-stratified contact rates (25) were derived 
from the POLYMOD diary-based study in Europe 
(30) and separated in contacts occurring at home, at 
school, at work and elsewhere. We used the national 
US age distribution (31) to aggregate these estimates 
from 17 to the 5 age groups of our model (Appendix 
Tables 4–7). We combined these matrices to model 4 
different types of days: normal school days (all con-
tacts); normal weekends and short weekday holidays 
(all but school and work contacts; adults are assumed 
to work during the long summer break); weekdays 
during school closures/social distancing; and week-
end or weekday holiday during school closure/so-
cial distancing. To model school closures with social 
distancing, we included all household contacts plus a 
specified proportion of contacts outside the home. On 
weekdays, this proportion included a proportion of 
contacts occurring at work and elsewhere; on week-
ends and holidays (excluding summer vacation), it in-
cluded just contacts occurring elsewhere. Days were 
assigned to 1 of these 4 contact models on the basis of 
the 2019–2020 and 2020–2021 school calendars from 
the Austin Independent School District, which was 
the largest public school district in the metropolitan 

area, serving ≈22.7% of the Austin  Round Rock Sta-
tistical Metropolitan Area population.

Healthcare Demands
We assumed that hospitalized cases were admitted 
on average 5.9 days (L. Tindale et al., unpub. data, 
https://doi.org/10.1101/2020.03.03.20029983) after 
symptom onset, with the infection hospitalization 
rate depending on the age and risk group (Appendix 
Table 1). Hospitalized case-patients who recovered 
were considered discharged an average of 11 days 
after admission; deaths occurred an average of 7.82 
days after admission. We estimated the number ICU 
beds and ventilators needed to care for COVID-19 
case-patients each day on the basis of age-specific 
rates provided by the CDC (Appendix Table 3) and 
assuming that the average duration of ICU care and 
ventilation support are 8 days and 5 days, respective-
ly. There is some uncertainty regarding how these 
estimates might change when healthcare facilities 
reach or exceed capacity because of a lack of avail-
able postdischarge care and inefficiency in the health-
care system caused by worker illness. Thus, we also 
tested an alternative scenario with longer duration of 
hospital stay, ICU care, and ventilation (Appendix). 
We did not consider potential excess deaths result-
ing from lack of access to adequate healthcare during 
pandemic surges.

Results
Our analyses focus on 2 key levers of intervention: the 
speed of implementation and the extent of social dis-
tancing. We considered 2 scenarios for the epidemic 
growth rate of COVID-19 and project 5 outcomes: 
cases, hospitalizations, ICU care, ventilator needs,  
and deaths.

Regardless of epidemic growth rate, school clo-
sures alone had little effect on the burden of the epi-
demic. These closures would flatten the curve slightly 
if enacted immediately after the detection of the first 
case (Figure 1). High levels of social distancing, when 
coupled with school closures, substantially delayed 
and dampened the epidemic peak. The impact of the 
measures depended on early implementation. Under 
both the slower and faster epidemic growth scenari-
os (i.e., 7-day and 4-day doubling times), immediate 
measures beginning on March 14 were much more 
effective than 2-month delayed measures at slowing 
transmission throughout the spring and summer of 
2020 (Figure 1). Given that recent estimates for the 
doubling time in US cities are short, ranging from 2.4 
to 3 days (24,32), this finding suggests that proactive 
measures were justified, because delayed measures 

Social Distancing and COVID-19 Healthcare Demand
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would have been almost entirely ineffective. If the 
reproduction is higher than we assumed, then more 
vigilant social distancing would be required to slow 
spread (Appendix). Although the immediate school 
closure on March 14 had little impact on the initial 
wave, the August opening of schools would be ex-
pected to amplify a fall wave if the population is not 
yet close to herd immunity.

To assess the impact of social distancing mea-
sures on mitigating healthcare surge in the Austin–
Round Rock Statistical Metropolitan Area, we consid-
ered the more plausible 4-day doubling time scenario 
(Table 1; Figure 2). Social distancing measures that 
reduced nonhousehold contacts by <50% were pro-
jected to delay but not prevent a healthcare crisis. 
Only the 75% and 90% contact reduction scenarios 
were projected to reduce hospitalizations, ICU care, 
and ventilator needs below the estimated capacity for 

the metropolitan area (Table 2). If 50% social distanc-
ing were implemented on March 28 instead of March 
14 (i.e., a 2-week delay), we would expect COVID-19 
ICU requirements to exceed local capacity by the end 
of June instead of only reaching capacity by the end 
of July (i.e., a 4-week acceleration) (Appendix). Un-
der scenarios that predict overwhelming healthcare 
surges, we likely underestimate deaths because we 
do not account for excess deaths for persons with CO-
VID-19 or other medical conditions, such as cancer or 
cardiovascular disease, who might not receive timely 
or safe care.

Under the naive scenario that school closures 
and social distancing measures are lifted entirely 
on the first day of the 2020–2021 academic year 
(August 18) (33), the pace and extent of COVID-19 
transmission in the fall would depend on how many 
persons were infected (and thereby immunized) 

Figure 1. Projected weekly incident of COVID-19 cases in Austin–Round Rock Metropolitan Statistical Area, Texas, USA. Graphs show 
simulation results for different levels of social distancing and implementation times, assuming an epidemic doubling time of A) 7.2 days 
(18–20,22) or B) 4 days (22–24). Each graph displays 3 projections: a baseline assuming no social distancing (red), social distancing 
implemented March 14–Aug 17, 2020 (blue), and social distancing implemented May 14–Aug 17, 2020 (black). From top to bottom, 
the graphs in each column correspond to increasingly stringent social distancing measures: school closures plus social distancing that 
reduces nonhousehold contacts by 0%, 25%, 50%, 75%, or 90%. Solid lines indicate medians of 100 stochastic simulations; shading 
indicates inner 95% ranges of values. The horizontal dotted lines beneath the curves indicate intervention periods. The faded mid-
August to December time range indicates long-range uncertainty regarding COVID-19 transmission dynamics and intervention policies. 
COVID-19, coronavirus disease.
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during the spring and summer (Figure 1). As cu-
mulative incidence approaches the herd immunity 
threshold of roughly 55% of the population, the ef-
fective reproduction number (Rt) decreases. Once 
this 55% threshold is surpassed, the reproduction 
number decreases below 1, and the virus would 
be unable to spread widely, even if social distanc-
ing measures are lifted. Assuming the faster 4-day 
epidemic doubling time (Figure 1, panel B), a mini-
mum of 50% social distancing is necessary to sup-
press transmission over the summer. Under 75% 
or 90% social distancing, the lifting of measures on 
August 18 would be expected to produce epidemic 
peaks in the middle or end of September, respec-
tively. Assuming the slower 7-day doubling time 
(Figure 1, panel A), even delayed social distanc-
ing would be expected to forestall the start of the 
epidemic from spring to fall. The higher fall peaks 
that were produced under the most extreme social 
distancing, assuming a 7-day doubling time, stem 
from baseline contact patterns (in the absence of so-
cial distancing): a COVID-19 epidemic that begins 
in the spring would be naturally dampened by the 
3-month summer vacation period when children 
are out of school, whereas a fall start would be am-
plified by the start of the academic year.

Discussion
As COVID-19 emerged as a global threat in early 
2020, we rapidly adapted a pandemic influenza 
model that was under development as part of an 
effort coordinated by CDC to build a strategic na-
tional modeling resource for pandemic planning 
and response. The analyses provided in this report 
originated in time-sensitive requests from CDC, 
Austin, and the state of Texas to evaluate the poten-
tial impact of school closures and social distancing 
on the emergence and spread of COVID-19 in US 
cities. Our projections indicate that, without exten-
sive social distancing measures, the emerging out-
break would quickly surpass healthcare capacity 

in the region. However, with extensive social dis-
tancing, the number of cases, hospitalizations, and 
deaths could be substantially reduced throughout 
the summer of 2020. Although these analyses are 
specific to the Austin–Round Rock metropolitan 
area, we expect that the impacts of the mitigation 
strategies will be qualitatively similar for cities 
throughout the United States.

Our epidemiologic projections and conclusions 
regarding the urgent need for extensive social dis-
tancing are consistent with a recent analysis by Impe-
rial College London (34). However, we assume that 
a lower percentage of hospitalized patients receive 
critical care (15%–20% vs. 30%) and consequently 
project a lower peak ICU demand. In sensitivity 
analyses with more extreme assumptions about criti-
cal care requirements, the projected peak demand 
increases  accordingly (Appendix). The local focus of 
our model, which incorporates city-specific data re-
garding demographics, high-risk conditions, contact 
patterns, and healthcare resource availability, enables 
us to project near-term healthcare demands and pro-
vide actionable insights for local healthcare and gov-
ernmental decision-makers.

We conducted these analyses to inform decision 
making in a rapidly evolving environment with sub-
stantial uncertainty. On March 6, 2020, Austin de-
clared a local state of disaster and cancelled the South 
by Southwest Conference and Festival, which was 
expected to draw 417,400 visitors from around the 
world and bring $355.9 million to the local economy 
(35). Evidence of community transmission appeared 
within days of the first confirmed COVID-19 case in 
Austin on March 13. Shortly after, the University of 
Texas at Austin, one of the largest public universities 
with >50,000 students, and the largest public school 
district in Austin announced school closures (36,37). 
On March 24, Austin issued a Stay Home-Work Safe 
order to eliminate all nonessential business and 
travels (38). Leaders of Austin requested the health-
care analyses (Figure 2) in the days leading up to the 

 
Table 1. Estimated cumulative COVID-19 cases, healthcare requirements, and deaths, Austin–Round Rock metropolitan statistical 
area, Texas, USA, March 1–August 17, 2020* 

Outcome No measures School closure 

School closure  
and 50% social 

distancing 

School closure 
and 75% social 

distancing 

School closure 
and 90% social 

distancing 
Cases 1,139,633  

(1,092,754–1,173,408) 
1,098,755  

(1,016,794–1,143,147) 
596,304  

(215,897–854,094) 
34,232  

(2,871–244,959) 
2,013  

(642–11,358) 
Hospitalizations 79,120  

(75,373–82,608) 
76,698  

(70,091–80,602) 
36,534  

(11,474–57,912) 
1,889  

(159–13,512) 
125  

(32–660) 
ICU 13,312 (12,673–13,890) 12,897 (11,786–13,540) 6141 (1,929–9,736) 318 (27–2,273) 21 (5–111) 
Ventilators 6,274 (5,973–6,545) 6,077 (5,554–6,377) 2,893 (909–4,587) 150 (13–1,071) 10 (3–53) 
Deaths 9,646 (9,031–10,206) 9,324 (8,481–9,954) 3,698 (995–6,751) 176 (13–1,315) 13 (1–70) 
*Values are medians (95% prediction intervals) across 100 stochastic simulations based on parameters in Table 1. COVID-19, coronavirus disease; ICU, 
intensive care unit. 
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order of March 24 and requested that we release a 
preliminary report to educate the public (39).

Social distancing measures, including school 
closures, restrictions on travel, mass gatherings and 
commercial activities, and more extensive shelter-in-
place advisories, aim to decrease disease transmission 
within a population by preventing contacts between 
persons. Our analyses project the effect of such mea-
sures on the transmission dynamics of COVID-19 but 
do not consider the economic, social and psychologi-
cal costs of social distancing measures, including the 
socioeconomic disparities in burden and illness and 
death resulting from reductions in health and mental 
healthcare services (40,41).

There is an urgent need to project the relative 
effects of different levels of social distancing in light 
of their potential societal costs, including school 
closures, partial work and travel restrictions and 
cocooning of the high risk, so that restrictions can 
be strategically lifted without compromising pub-
lic health. In particular, school closures are often  

deployed earlier than more extensive social distanc-
ing measures. However, such closures can be costly, 
particularly for low-income families who might rely 
on lunch programs and be unable to afford childcare 
(42,43), and our analysis suggests that they might 
only slightly reduce the pace of transmission and 
peak hospital surge. However, the role of children 
in community transmission of COVID-19 remains 
uncertain; thus, school closures are prudent at this 
time. Children represent a low proportion of con-
firmed cases worldwide (44,45), perhaps reflecting 
that COVID-19 is less severe in children than adults 
(46). If we learn that the prevalence or infectious-
ness of COVID-19 is low in children, then opening 
schools may be a reasonable first step toward resum-
ing normalcy.

Although our model incorporates considerable 
detail regarding the natural history of COVID-19, 
age- and location-specific contact patterns, and the 
demographic and risk composition of the Austin–
Round Rock Statistical Metropolitan Area, it does 

Figure 2. Projected COVID-19 healthcare demand and cumulative deaths in Austin–Round Rock Metropolitan Statistical Area, 
Texas, USA. Graphs show simulation results across multiple levels of social distancing, assuming a basic reproductive number of 
2.2 with a 4-day epidemic doubling time. Extensive social distancing is expected to substantially reduce the burden of COVID-19 A) 
hospitalizations, B) patients requiring ICU care, C) patients requiring mechanical ventilation, and D) cumulative deaths. Red lines 
indicate projected COVID-19 transmission assuming no interventions under the parameters given in Table A1. Blue lines indicate 
increasing levels of social distancing interventions, from light to dark: school closures plus social distancing interventions that reduce 
nonhousehold contacts by either 0%, 50%, 75%, or 90%. Lines and shading indicate medians and inner 95% ranges of values across 
100 stochastic simulations. Gray shaded region indicates estimated surge capacity for COVID-19 patients in the Austin-Round Rock 
Metropolitan Statistical Area as of March 28, 2020, which is calculated on the basis of 80% of the total 4,299 hospital beds, 90% of the 
total 755 ICU beds, and 755 mechanical ventilators. COVID-19, coronavirus disease; ICU, intensive care unit.
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not explicitly capture neighborhood, household, or 
other community structure that can serve to amplify 
or impede transmission (47–49). In addition, we ig-
nored the possible importation of COVID-19 cases 
from other cities, under the assumption that the ad-
ditional cases would have a negligible impact, par-
ticularly during the period of exponential growth. 
Although large numbers of introductions could un-
dermine mitigation efforts that radically suppress 
transmission, we conjecture that such efforts would 
include travel restrictions, contact tracing and other 
measures to contain emerging clusters. Our model 
also does not evaluate other potentially effective in-
terventions, such as increased levels of selective test-
ing and isolation.

These analyses rely on recently published esti-
mates for transmission rate and severity of COVID-19, 
as well as best estimates from expert opinions from 
CDC and Dell Medical School. There is still much we 
do not understand about the transmission dynamics of 
SARS-CoV-2, including its R0, the infectiousness of as-
ymptomatic case-patients (28), and the extent to which 
infections confer future immunity (50), all of which are 
key to anticipating future pandemic waves. As of June 
2020, it is likely most US cities remain far from herd 
immunity. Even in New York, New York, which ex-
perienced a substantially larger first wave than other 
cities, serologic surveys suggest that only 22.7% of the 
population has been exposed (E.S. Rosenberg et al., un-
pub. data, https://doi.org/10.1101/2020.05.25.201130
50). However, summer surges in transmission in some 
cities might infect large numbers of persons by the 
beginning of the fall semester. In that case, resolving 
these key uncertainties will be critical to projecting the 
full impact of school openings. Our understanding of 
COVID-19 is evolving so rapidly that we expect there 
might be consensus around different estimates for key 
transmission and severity parameters by the time this 
work is published. Thus, we emphasize the qualitative 
but not quantitative results of the analysis.

Given the rapid spread of COVID-19, early 
and extensive social distancing are both viable and  
necessary for preventing catastrophic hospital surges. 
Despite this study’s uncertainties in key parameters 
and the focus on a single city, the expansion and con-
tainment of COVID-19 in cities worldwide suggest 
that these insights are widely applicable. This frame-
work can be updated as situational awareness of CO-
VID-19 improves to provide a quantitative sounding 
board as public health agencies evaluate strategies for 
mitigating risks while sustaining economic activity in 
the United States.
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(10–212) 
Hospitalizations 23,073  

(20,961–24,695) 
20,671  

(17,193–22,473) 
6,804  

(3,088–10,271) 
402  

(31–2,963) 
18  

(5–105) 
ICU 2,831 (2,575–3,033) 2,532 (2,107–2,759) 833 (377–1,254) 50 (4–362) 2 (1–13) 
Ventilators 835 (760–895) 746 (621–814) 245 (111–369) 15 (1–107) 1 (0–4) 
*Values are medians (95% prediction intervals) across 100 stochastic simulations based on parameters in Table 1. COVID-19, coronavirus disease; ICU, 
intensive care unit. 
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Section 1. COVID-19 Epidemic Model Structure and Parameters 

The model structure is diagrammed in Appendix Figure 1 and described in the equations 

below. 

For each age and risk group, we build a separate set of compartments to model the 

transitions between the states: susceptible (S), exposed (E ), symptomatic infectious (IY), 

asymptomatic infectious (IA), symptomatic infectious that are hospitalized (IH), recovered (R ), 

and deceased (D). The symbols S, E, I Y, IA, IH, R, and D denote the number of people in that state 

in the given age/risk group and the total size of the age/risk group is N  =  S + E + IY + IA +  IH + R 

+ D . 

The model for individuals in age group a and risk group r is given by: 

 

https://doi.org/10.3201/eid2510.201702
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where A  and K  are all possible age and risk groups, ωA, ωY , ωH are relative infectiousness 

of the IA, IY , E compartments, respectively, 𝛽𝛽 is transmission rate, φa,i is the mixing rate between 

age group a, i ∈ A, γA,γY , γH are the recovery rates for the IA, IY , IH compartments, respectively, 𝜎𝜎 

is the exposed rate, 𝜏𝜏 is the symptomatic ratio, 𝜋𝜋 is the proportion of symptomatic individuals 

requiring hospitalization, 𝜂𝜂 is rate at which hospitalized cases enter the hospital following 

symptom onset, 𝜈𝜈 is mortality rate for hospitalized cases, and 𝜇𝜇 is rate at which terminal patients 

die. 

Initial conditions, school closures and social distancing policies are shown in Appendix 

Table 1. We model stochastic transitions between compartments using the 𝜏𝜏-leap method (1,2) 

with key parameters given in Appendix Table 2. Hospitalization parameters are shown in 

Appendix Table 3. Assuming that the events at each time-step are independent and do not impact 

the underlying transition rates, the numbers of each type of event should follow Poisson 

distributions with means equal to the rate parameters. We thus simulate the model according to the 

following equations: 

Sa,r (t + 1) − Sa,r (t) = − P 1 

Ea,r (t + 1) − Ea,r (t) = P 1 − P 2 

IaA,r (t + 1) − IaA,r (t) = (1 − τ)P 2 − P 3 

IaY,r (t + 1) − IaY,r (t) = τP 2 − P 4 − P 5 

IaH,r (t + 1) − IaH,r (t) = P 5 − P 6 − P 7 

Ra,r (t + 1) − Ra,r (t) = P 3 + P 4 + P 6 

Da,r (t + 1) − Da,r (t) = P 7, 

with 

P 1 ~ Pois(Sa,r (t)F a,r (t)) 

P 2 ~ Pois(σEa,r (t)) 

P 3 ~ Pois(γAIaA,r (t)) 

P 4 ~ Pois((1 − π)γY IaY,r (t)) 

P 5 ~ Pois(πηIaY,r (t)) 

P 6 ~ Pois((1 − ν)γHIaH) 
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P 7 ~ Pois(νμIaH,r (t)) 

and where F a,r denotes the force of infection for individuals in age group  and risk group 

 and is given by: 

F a,r a,i/Ni . 

i∈A j∈K 

 
 

Appendix Figure 1. Compartmental model of COVID-19 transmission in a US city. Each subgroup 
(defined by age and risk) is modeled with a separate set of compartments. Upon infection, susceptible 

individuals (S) progress to exposed (E) and then to either symptomatic infectious (IY) or asymptomatic 

infectious (IA). All asymptomatic cases eventually progress to a recovered class where they remain 

protected from future infection (R ); symptomatic cases are either hospitalized (I) or recover. Mortality (D ) 

varies by age group and risk group and is assumed to be preceded by hospitalization. 

 

Appendix Table 1. Initial conditions, school closures and social distancing policies 
Variable Settings 
Initial day of simulation 3/1/2020 
Initial infection number in locations 5 symptomatic cases in 18–49y age group 
Trigger to close school 3/14/2020 
Closure Duration Until start of 2020–2021 school year (8/17/20) 
ɑ: Reduction of nonhousehold contacts (work and other) Five scenarios: 0, 0.25, 0.5, 0.75, 0.9 
Age-specific and day-specific contact rates Home, work, other and school matrices provided in Appendix 

Tables 4–7; Normal weekday = home + work + other + school; 
Normal weekend = home + other; Normal weekday holiday = 

home + other; Normal weekday during summer or winter break 
= home + work + other; School closure weekday = home + (1 – 
ɑ) × (work + other); School closure weekend = home + (1 – ɑ) × 

(other); School closure weekday holiday =  home + (1 – ɑ) × 
(other); School closure during summer or winter break = home 

+ (1 – ɑ) × (work + other) 
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Appendix Table 2. Model parameters in which values that are given as 5element vectors are age-stratified with values corresponding 
to 0–4, 5–17, 18–49, 50–64, 65+ year age groups, respectively* 

Parameter 
Best guess – values (doubling 

time = 7.2 d) 
Best guess values (doubling 

time = 4 d) Source 
R0 2.2 2.2 Li et al. (3) 
δ: doubling time 7.2 d 4 d Kraemer et al. (4) 
β: transmission rate* 0.0311915 0.0500845 Fitteda to obtain specified R0  

given δ 
γA : recovery rate on 
asymptomatic infectious 
compartment 

Equal to γY  

γY: recovery rate on 
symptomatic infectious 
nontreated compartment 

1
Y ~  Triangular (5.3, 6.3, 7.3) γ (5) 

τ: symptomatic proportion (%) 57 (6) 
σ: exposed rate 1 ~  Triangular (1.9, 2.9, 3.9) σ Based on incubation (7) 

and presymptomatic 
periods (5) 

ωE: relative infectiousness of 
individuals in compartment E 

ωE = 0  

ωA : relative infectiousness of 
infectious individuals in 
compartment IA 

2 3 He et al. (8) 

IFR: infected fatality ratio, age 
specific (%) 

Overall: [0.0016, 0.0049, 0.084, 1.000, 3.371]; Low risk: 
[0.00091668, 0.0021789, 0.03388, 0.25197, 0.64402]; High 

risk: [0.009167, 0.02179, 0.33878, 2.5197, 6.4402] 

Age adjusted from Verity et al. 
(9) 

YFR: symptomatic fatality ratio, 
age specific (%) 

Overall: [0.002807, 0.008678, 0.1479, 1.755, 5.915]; Low risk: 
[0.001608, 0.003823, 0.05943,0.4420, 1.130]; High risk: 

[0.01608, 0.03823, 0.5943, 4.420, 11.30] 

Y FR = IFτR 

h: high-risk proportion, age 
specific (%) 

[8.2825, 14.1121, 16.5298, 32.9912, 47.0568] Estimated using 2015–2016; 
Behavioral Risk Factor; 

Surveillance System (BRFSS) 
data with multilevel regression 

and poststratification using 
CDC’s list of conditions that 
might increase the risk of 

serious complications from 
influenza (10–12) 

rr: relative risk for high-risk 
persons compared with low 
risk in their age group 

10 Assumption 

School calendars Austin Independent School District calendar (2019–2020, 2020–
2021) 

(13) 

*The parameter β is fitted through constrained trust-region optimization in SciPy/Python (14). Given a value of β, a deterministic simulation is run 
based on central values for each parameter, from which we can compute the implied R0 (β). We (1) track the daily number of new cases It (both 
symptomatic and asymptomatic) during the exponential growth portion of the epidemic (2), compute the log of the number of new cases: yt = log (It) 
and (3) use least squares to fit a line to this curve: log (It) = y0 + g × t. We then estimate the reproduction number R0 (β) of the simulation for that 
specific value of β as R0 (β) =  1 Γ + g × 1 where Γ is the generation time given by Γ = δ(R0 − 1)/log(2). The optimizing function runs until the resulting 
value of R0 (β) does not get closer to the target value.  

 
 

We (1) track the daily number of new cases It (both symptomatic and asymptomatic) 

during the exponential growth portion of the epidemic (2), compute the log of the number of new 

cases: yt = log (It) and (3) use least squares to fit a line to this curve: log t. We then 

estimate the reproduction number R0 (β) of the δ(R0−1) simulation for that specific value of β as R 

1 where Γis the generation time given by Γ = 
 

log (2) . 

The optimizing function runs until the resulting value of R0 (β) does not get closer to the 

target value. 
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Appendix Table 3. Hospitalization parameters 
Parameter Value Source 
γH : recovery rate in hospitalized 
compartment 

0.0912409 10.96 d-average from admission to 
discharge (Fit to Austin admissions and 
discharge data) 

YHR: symptomatic case hospitalization 
rate (%) 

Overall: [0.07018, 0.07018, 4.735, 16.33, 
25.54]; Low risk: [ 0.04021, 0.03091, 

1.903, 4.114, 4.879]; High risk: [ 0.4021, 
0.3091, 19.03, 41.14, 48.79] 

Age adjusted from Verity et al. (9) 

π: rate of symptomatic individuals go to 
hospital, age-specific 

  

 

η: rate from symptom onset to 
hospitalized 

0.12195 5.9 d average from symptom onset to 
hospital admission (L. Tindale et al., 

unpub. data, 
https://doi.org/10.1101/2020.03.03.20029
983) and 2.3 d pre-symptomatic period 

from He et al. (5) 
μ: rate from hospitalized to death 0.12821 7.8 d-average from admission to death 

(Fit to Austin admissions and discharge 
data) 

HFR: hospitalized fatality ratio, age 
specific (%) 

[4, 12.365, 3.122, 10.745, 23.158] 
 

ν: death rate on hospitalized individuals 
age specific 

[0.0390, 0.1208, 0.0304, 0.1049, 0.2269] 

  
ICU: proportion hospitalized people in ICU [0.15, 0.20, 0.15, 0.20, 0.15] CDC COVID-19 planning scenarios 

(based on US seasonal flu data) 
Vent: proportion of individuals in ICU 
needing ventilation 

[0.35, 0.3, 0.45, 0.5, 0.45] CDC planning scenarios (based on 
US seasonal flu data) 

dICU : duration of stay in ICU 8 d Assumption, computed as average of 
hospital stay and ventilation durations 

dV : duration of ventilation 5 d CDC COVID-19 planning scenarios 
HCS:healthcare capacity Hospital bed: 4,299; ICU bed: 755; 

Ventilator: 755 
Estimates provided by each of the 

region's hospital systems and aggregated 
by regional public health leaders 

 
Appendix Table 4. Home contact matrix (daily number contacts by age group at home) 
Age, y  0–4 5–17 18–49 50–64 >65 
<1–4 0.5 0.9 2.0 0.1 0.0 
5–17 0.2 1.7 1.9 0.2 0.0 
18–49 0.2 0.9 1.7 0.2 0.0 
50–64 0.2 0.7 1.2 1.0 0.1 
>65 0.1 0.7 1.0 0.3 0.6 

 
Appendix Table 5. School contact matrix (daily number contacts by age group at school) 
Age, y  0–4 5–17 18–49 50–64 >65 
<1–4 1.0 0.5 0.4 0.1 0.0 
5–17 0.2 3.7 0.9 0.1 0.0 
18–49 0.0 0.7 0.8 0.0 0.0 
50–64 0.1 0.8 0.5 0.1 0.0 
>65 0.0 0.0 0.1 0.0 0.0 

 
Appendix Table 6. Work contact matrix (daily number contacts by age group at work) 
Age, y  0–4 5–17 18–49 50–64 >65 
>1–4 0.0 0.0 0.0 0.0 0.0 
5–17 0.0 0.1 0.4 0.0 0.0 
18–49 0.0 0.2 4.5 0.8 0.0 
50–64 0.0 0.1 2.8 0.9 0.0 
>65 0.0 0.0 0.1 0.0 0.0 

 
Appendix Table 7. Others contact matrix (daily number contacts by age group at other locations) 
Age, y  0–4 5–17 18–49 50–64 >65 
>1–4 0.7 0.7 1.8 0.6 0.3 
5–17 0.2 2.6 2.1 0.4 0.2 
18–49 0.1 0.7 3.3 0.6 0.2 
50–64 0.1 0.3 2.2 1.1 0.4 
>65 0.0 0.2 1.3 0.8 0.6 
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Section 2. Estimation of age-stratified proportion of population at high risk for 
COVID-19 complications 

High-risk conditions for influenza and data sources for prevalence estimation are shown in 

Appendix Table 8. We estimate age-specific proportions of the population at high risk of  

complications from COVID-19 based on data for Austin, TX and Round-Rock, TX from the 

CDC’s 500 cities project (Appendix Figure 2) (15). We assume that high risk conditions for 

COVID-19 are the same as those specified for influenza by the CDC (10). The CDC’s 500 cities 

project provides city-specific estimates of prevalence for several of these conditions among adults 

(16). The estimates were obtained from the 2015–2016 Behavioral Risk Factor Surveillance 

System (BRFSS) data using a small-area estimation method known as multilevel regression and 

poststratification (11,12). It links geocoded health surveys to high spatial resolution population 

demographic and socioeconomic data (12). 

Projected weekly incident COVID-19 cases are shown in Appendix Figure 3, and 

projected COVID-19 healthcare demand and cumulative deaths are shown in Appendix Figure 4. 

Estimating High-Risk Proportions for Adults 

To estimate the proportion of adults at high risk for complications, we use the CDC’s 500 

cities data, as well as data on the prevalence of HIV/AIDS, obesity and pregnancy among adults 

(Appendix Table 2). 

The CDC 500 cities dataset includes the prevalence of each condition on its own, rather 

than the prevalence of multiple conditions (e.g., dyads or triads). Thus, we use separate co-

morbidity estimates to determine overlap. Reference about chronic conditions (17) gives US 

estimates for the proportion of the adult population with 0, 1 or >2 chronic conditions, per age 

group. Using this and the 500 cities data we can estimate the proportion of the population pHR in 

each age group in each city with >1 chronic condition listed in the CDC 500 cities data (Appendix 

Table 2) putting them at high risk for flu complications. 

HIV 

We use the data from Table 20 in a CDC HIV surveillance report (18) to estimate the 

population in each risk group living with HIV in the U.S. (last column, 2015 data). Assuming 

independence between HIV and other chronic conditions, we increase the proportion of the 
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population at high-risk for influenza to account for individuals with HIV but no other underlying 

conditions. 

Morbid Obesity 

A BMI >40 kg/m2 indicates morbid obesity and is considered high risk for influenza. The 

500 Cities Project reports the prevalence of obese people in each city with BMI > 30 kg/m2 (not 

necessarily morbid obesity). We use the data from Table 1 in Sturm and Hattori (19) to estimate 

the proportion of people with a BMI >30 that actually have a BMI >40 (across the United States); 

we then apply this to the 500 Cities obesity data to estimate the proportion of people who are 

morbidly obese in each city. Table 1 of Morgan et al. (20) suggests that 51.2% of morbidly obese 

adults have >1 other high risk chronic condition, and update our high-risk population estimates 

accordingly to account for overlap. 

Pregnancy 

We separately estimate the number of pregnant women in each age group and each city, 

following the methods in the CDC reproductive health report (21). We assume independence 

between any of the high-risk factors and pregnancy, and further assume that half the population 

are women. 

Estimating High-Risk Proportions for Children 

Since the 500 Cities Project only reports data for adults >18 years of age, we take a 

different approach to estimating the proportion of children at high risk for severe influenza. The 2 

most prevalent risk factors for children are asthma and obesity; we also account for childhood 

diabetes, HIV and cancer. 

From Miller et al. (22), we obtain national estimates of chronic conditions in children. For 

asthma, we assume that variation among cities will be similar for children and adults. Thus, we 

use the relative prevalence of asthma in adults to scale our estimates for children in each city. The 

prevalence of HIV and cancer in children are taken from CDC HIV surveillance report (18) and 

cancer research report (23), respectively. 

We first estimate the proportion of children having either asthma, diabetes, cancer or HIV 

(assuming no overlap in these conditions). We estimate city-level morbid obesity in children using 

the estimated morbid obesity in adults multiplied by a national constant ratio for each age group 

estimated from Hales et al. (24), this ratio represents the prevalence in morbid obesity in children 

given the one observed in adults. From Morgan et al. (20), we estimate that 25% of morbidly 

obese children have another high-risk condition and adjust our final estimates accordingly. 
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Resulting Estimates 

We compare our estimates for the Austin-Round Rock Metropolitan Area to published 

national-level estimates (25) of the proportion of each age group with underlying high risk 

conditions (Appendix Table 9). The biggest difference is observed in older adults, with Austin 

having a lower proportion at risk for complications for COVID-19 than the national average; for 

25–39 year-old the high risk proportion is slightly higher than the national average. 

 
Appendix Figure 2. Demographic and risk composition of the Austin-Round Rock population. Bars 

indicate age-specific population sizes, separated by low risk, high risk, and pregnant. High risk is defined 

as individuals with cancer, chronic kidney disease, COPD, heart disease, stroke, asthma, diabetes, 

HIV/AIDS, and morbid obesity, as estimated from the CDC 500 Cities Project (15), reported HIV 

prevalence (18) and reported morbid obesity prevalence (19,20), corrected for multiple conditions. The 

population of pregnant women is derived using the CDC’s method combining fertility, abortion and fetal 

loss rates (26–28). 

 
Appendix Table 8. High-risk conditions for influenza and data sources for prevalence estimation 
Condition Data source 
Cancer (except skin), chronic kidney disease, COPD, coronary 
heart disease, stroke, asthma, diabetes CDC 500 cities (29) 

HIV/AIDS CDC HIV Surveillance report (30) 
Obesity CDC 500 cities (29), Sturm and Hattori (19), Morgan et al. (20) 
Pregnancy National Vital Statistics Reports (31) and abortion data (27) 
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Appendix Table 9. Comparison between published national estimates and Austin-Round Rock MSA estimates of the percent of the 
population at high-risk of influenza/COVID-19 complications 
Age group National estimates (24) Austin (excluding pregnancy) Pregnant women (proportion of age group) 
<1 to 6 mo NA 6.8 – 
6 mo to 4 y 6.8 7.4 – 
5 to 9 y 11.7 11.6 – 
10 to 14 y 11.7 13.0 – 
15 to 19 y 11.8 13.3 1.7 
20 to 24 y 12.4 10.3 5.1 
25 to 34 y 15.7 13.5 7.8 
35 to 39 y 15.7 17.0 5.1 
40 to 44 y 15.7 17.4 1.2 
45 to 49 y 15.7 17.7 – 
50 to 54 y 30.6 29.6 – 
55 to 60 y 30.6 29.5 – 
60 to 64 y 30.6 29.3 – 
65 to 69 y 47.0 42.2 – 
70 to 74 y 47.0 42.2 – 
>75 y 47.0 42.2 – 

 
 

Section 3. Sensitivity Analysis with Respect to R0 

Our base scenarios assume a basic reproductive number (R0) of 2.2. Here, we provide 

projections assuming that COVID-19 has a higher reproduction number of R0 = 3.5, with a 

doubling time of both 4 days and 7.2 days. Assuming this faster transmission scenario, higher 

levels of social distancing are required to reduce the burden of the disease. 
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Appendix Figure 3. Projected weekly incident COVID-19 cases in the Austin-Round Rock MSA. Graphs 

show simulation results for different levels of social distancing and implementation times, assuming 

R0 = 3.5 and an epidemic doubling time of A) 7.2 days (19–22) or B) 4 days (22,24,25). Each graph 

displays 3 projections: a baseline assuming no social distancing (red), social distancing implemented 

March 14-Aug 17, 2020 (blue), and social distancing implemented May 14-Aug 17, 2020 (black). From top 

to bottom, the graphs in each column correspond to increasingly stringent social distancing measures: 

school closures plus social distancing that reduces nonhousehold contacts by 0%, 25%, 50%, 75%, or 

90%. Solid lines indicate the median of 100 stochastic simulations; shading indicates the inner 95% range 

of values. The horizontal dotted lines beneath the curves indicate intervention periods. The faded mid-

August to December time range indicates long-range uncertainty regarding COVID-19 transmission 

dynamics and intervention policies. 
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Appendix Figure 4. Projected COVID-19 healthcare demand and cumulative deaths in the Austin-Round 

Rock MSA from March 1 to August 17, 2020. Graphs show simulation results across multiple levels of 

social distancing, assuming R 0 = 3.5 with a 4-day epidemic doubling time.  Extensive social distancing is 

expected to substantially reduce the burden of COVID-19 A) hospitalizations, B) patients requiring ICU 

care, C) patients requiring mechanical ventilation, and D) deaths. The red lines project COVID-19 

transmission assuming no interventions under the parameters given in Table A1. The blue lines show 

increasing levels of social distancing interventions, from light to dark: school closures plus social distancing 

interventions that reduce nonhousehold contacts by either 0%, 50%, 75% or 90%. Lines and shading 

indicate the median and inner 95% range of values across 100 stochastic simulations. Gray shaded region 

indicates estimated surge capacity for COVID-19 patients in the Austin-Round Rock MSA as of March 28, 

2020, which is calculated based on 80% of 42,99 hospital beds and 90% of 755 ICU beds and 755 

mechanical ventilators. 

Section 4. Sensitivity Analysis with Respect to Healthcare Durations 

With the assumption that the healthcare system is likely to perform less effectively under 

the highly stressed condition, patient discharge might take longer in the surge setting. As 

sensitivity analysis, we analyzed longer duration hospital, ICU and ventilator treatment (Appendix 

Table 10). The results are summarized in Appendix Tables 11, 12 and Appendix Figure 5. 
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Appendix Table 10. Updated hospitalization parameters for which all values were modified based on discussions with Austin-Round 
Rock Medical authorities regarding worst case surge scenarios 

Parameters Original 
Updated for sensitivity 

analysis Details 
: recovery rate in hospitalized 

compartment 
0.0869565 0.07142857 14 d average from 

admission to discharge 
: rate from hospitalized to death 0.0892857 0.07142857 14 d average from admission to 

death 
Vent: proportion of individuals in 
ICU needing ventilation 

0.35, 0.3, 0.45, 0.5, 0.45 0.67 (all ages)  

dICU : duration of stay in ICU 8 d 14 d  
dV : duration of ventilation 5 d 10 d  

 
 
Appendix Table 11. Longer treatment surge scenario: estimated cumulative COVID-19 cases, healthcare requirements and deaths. 
The values are medians (with 95% prediction interval in parentheses) across 100 stochastic simulations for the Austin-Round Rock 
MSA from March 1 through August 17, 2020 based on the parameters given in Appendix Table 10 

Outcome No measures School closure 

School closure and 
50% social 
distancing 

School closure and 
75% social distancing 

School closure and 
90% social 
distancing 

Hospitalizations 79,788 (75,891-
82,399) 

76,873 (71,552-
80,870) 

40,719 (17,031-
57,014) 

2,120 (148-9,939) 118 (14-546) 

ICU 13,415 (12,775-
13,859) 

12,919 (12,025-
3,587) 

6,841 (2,859-
9,581) 

356 (25-1,673) 20 (2-92) 

Ventilators 8,943(8,517-
9,239) 

8,612 (8,016-9,058) 4,561 (1,906-
6,388) 

237 (17-1,115) 13 (2-61) 

 
 
Appendix Table 12.  Longer treatment surge scenario: estimated peak COVID-19 healthcare demands. The values are medians 
(with 95% prediction interval in parentheses) across 100 stochastic simulations for the Austin-Round Rock MSA from March 1 through 
August 17, 2020 based on the parameters given in Appendix Table 10 

Outcome No measures School closure 

School closure and 
50% social 
distancing 

School closure and 
75% social distancing 

School closure and 
90% social 
distancing 

Hospitalizations 27,678 (25,651-
29,286) 

25,347 (21,806-
27,588) 

8,862 (5,164-12,492) 564 (30-2,953) 22 (4-117) 

ICU 4,669 (4,323-
4,944) 

4,273 (3,673-4,649) 1,488 (868-2,101) 95 (5-496) 4 (1-20) 

Ventilators 2,223 (2,059-
2,354) 

2,035 (1,749-2,214) 709 (413-1,000) 45 (2-236) 2 (0-9) 
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Appendix Figure 5. Longer treatment surge scenario: projected COVID-19 healthcare demand and 

cumulative deaths in the Austin-Round Rock MSA from March 1 to August 17, 2020. Graphs show 

simulation results across multiple levels of social distancing, assuming R 0 = 2.2 with a 4-day epidemic 

doubling time.  Extensive social distancing is expected to substantially reduce the burden of COVID-19 A) 

hospitalizations, B) patients requiring ICU care, C) patients requiring mechanical ventilation, and D) deaths. 

The red lines project COVID-19 transmission assuming no interventions under the parameters given in 

Table A1. The blue lines show increasing levels of social distancing interventions, from light to dark: school 

closures plus social distancing interventions that reduce nonhousehold contacts by either 0%, 50%, 75% or 

90%. Lines and shading indicate the median and inner 95% range of values across 100 stochastic 

simulations. Gray shaded region indicates estimated surge capacity for COVID-19 patients in the Austin-

Round Rock MSA as of March 28, 2020, which is calculated based on 80% of 4,299 hospital beds and 

90% of 755 ICU beds and 755 mechanical ventilators. 

Section 5. Impact of 2-Week and 4-Week Delays in Implementation of Social 
Distancing Interventions, 2020. 

We also modeled intermediate delays of 2 weeks (March 28) and 4 weeks (April 11). Even 

2-week delays undermine the efficacy of the interventions with respect to reducing healthcare 

demand below local capacity (Appendix Figure 6, Appendix Table 13). 
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Appendix Figure 6. Graphs show simulation results for school closures with A) 50% reduction in 

nonhousehold contacts and B) 75% reduction in nonhousehold contacts, assuming R 0 = 2.2 with a 4-day 

epidemic doubling time.  The red lines project COVID-19 transmission assuming no interventions under the 

parameters given in Appendix Table 1. The other lines colors indicate different delays in the timing of 

intervention: blue, green, yellow and black correspond to March 14, March 28, April 11, and May 14, 2020, 

respectively. Lines and shading indicate the median and inner 95% range of values across 100 stochastic 

simulations. Gray shaded region indicates estimated surge capacity for COVID-19 patients in the Austin-

Round Rock MSA as of March 28, 2020, which is calculated based on 90% of 755 ICU beds. 

 

Appendix Table 13. Date when COVID-19 healthcare requirements exceed capacity based on implementation date for school 
closures with 50% or 75% social distancing. Each value is a median across 100 stochastic simulations for the Austin-Round Rock 
MSA before August 17, 2020, based on the parameters given in Appendix Table 1 

Outcome 

School closure and 50% 
social distancing 

School closure and 75% 
social distancing 

March 14 
start 

March 28 
start 

April 11 
start 

March 14 
start 

March 28 
start 

April 11 
start 

Hospitalizations July 1 June 7 May 23 Not exceed Not exceed Not exceed 
ICU July 20 June 20 May 31 Not exceed Not exceed Not exceed 
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