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Modeling Treatment Strategies to Inform 
Yaws Eradication 

Appendix 

Finding Alpha 

The system can be described at steady state using the following master equation: 

𝜕𝜕𝑃𝑃𝑆𝑆,𝐼𝐼,𝐴𝐴
𝑁𝑁

𝜕𝜕𝜕𝜕 = −��𝜖𝜖+ 𝛽𝛽𝛽𝛽
𝑁𝑁−1� 𝑆𝑆+ 𝛿𝛿(𝐴𝐴+ 𝐼𝐼) + 𝜌𝜌𝜌𝜌+ 𝜆𝜆𝜆𝜆�𝑃𝑃𝑆𝑆,𝐼𝐼,𝐴𝐴

𝑁𝑁 + �𝜖𝜖+ 𝛽𝛽(𝐼𝐼−1)
𝑁𝑁−1 � (𝑆𝑆+ 1)𝑃𝑃𝑆𝑆+1,𝐼𝐼−1,𝐴𝐴 

𝑁𝑁  (1)  

+ 𝛿𝛿(𝐴𝐴 + 1)𝑃𝑃𝑁𝑁𝑆𝑆−1,𝐼𝐼,𝐴𝐴+1 +  𝛿𝛿(𝐼𝐼 + 1)𝑃𝑃𝑁𝑁𝑆𝑆−1,𝐼𝐼+1,𝐴𝐴 +  𝜌𝜌(𝐴𝐴 + 1)𝑃𝑃𝑁𝑁𝑆𝑆,𝐼𝐼−1,𝐴𝐴+1 + 𝜆𝜆(𝐼𝐼 + 1)𝑃𝑃𝑁𝑁𝑆𝑆,𝐼𝐼+1,𝐴𝐴−1, 

subject to the following constraints on S, I and A: 

𝑆𝑆 + 𝐼𝐼 + 𝐴𝐴 = 𝑁𝑁 

𝑆𝑆 ≥ 0, 𝐼𝐼 ≥ 0,𝐴𝐴 ≥ 0 

However, as stated above, this is only applicable once we reach steady state. By applying 

an intervention, we perturb the system away from steady state and so the same dynamics do not 

apply. Rather than using a constant, steady state value for ε, we need to consider an ε 

proportional to the number of infectious individuals in the population. Consider a population of 

𝑀𝑀 households, where the ℎ𝑡𝑡ℎhousehold is of size 𝑁𝑁ℎ(𝑡𝑡), with 𝐼𝐼ℎ(𝑡𝑡)infectious individuals at time 

𝑡𝑡(though in our model 𝑁𝑁ℎis constant, so will not var.y in time). Then we want to consider an ε of 

the form 

𝜀𝜀(𝑡𝑡)  =  𝛼𝛼 ∑ 𝐼𝐼ℎ(𝑡𝑡)ℎ
∑ 𝑁𝑁ℎ(𝑡𝑡)ℎ

. 

As ε is a monotonic increasing function of 𝛼𝛼, there is a unique value of 𝛼𝛼that will lead to 

the same steady state given by each constant ε. 

To determine which value of 𝛼𝛼 corresponds to each ε, we would typically just use 

numerical solvers with the steady state state distribution from the master equation. However, as 

each household is no longer independent (As each depends on the total number of infectious 
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individuals in all other houses), equation 1 no longer represents our system. Instead we would 

have to consider the number of houses in each household state, but this would take too long to 

manipulate numerically to be of any use. To overcome this, we instead implement a scheme that 

lets us use the Gillespie algorithm to determine the value of 𝛼𝛼, but first we need to update the 

version of the Gillespie algorithm we are using. This will include the update step for ε after each 

iteration, and will also include the use of convergence diagnostics (Geweke diagnostic) to ensure 

we are only drawing from the stationary distribution when determining 𝛼𝛼. 

We implement the following scheme to determine the values of 𝛼𝛼 

1. Draw values for 𝜖𝜖,𝛽𝛽, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌from their respective posterior distributions. 

2. Determine the steady state distribution corresponding to these parameters. 

3. Calculate an initial guess for 𝛼𝛼 using 𝛼𝛼0 =  𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∑ <𝐼𝐼ℎ>∞ℎ

× ∑ 𝑁𝑁ℎℎ ,where < 𝐼𝐼ℎ >∞denotes 

the expected number of infectious individuals in household at the endemic steady state. 

4. Simulate forward the master equation for each constant ε to approximately determine 

how long it will take to converge to steady state when using the corresponding 𝛼𝛼. Do this by 

finding times t* at which the number of infectious individuals remains within 0.01 of the 

previously calculated steady states until a predetermined time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. If it does not converge in this 

time, keep increasing 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚until the master equation converges. We take a burn-in time of 

1.5 × 𝑡𝑡∗. 

5. Set 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚equal to some large period of time (to allow for a sufficiently large number of 

iterations, and also to ensure convergence), and set the initial condition equal to ∑ < 𝐼𝐼ℎ >∞ℎ . 

6. Use a numerical solver such as MATLAB’s fzero to determine which value of 𝛼𝛼will 

give the same steady state determined previously. 

7. Repeat from step 1 until enough samples have been drawn to determine the distribution 

of 𝛼𝛼. 

Geweke Diagnostic 

The Geweke convergence diagnostic (1) is a way for us to ensure that the markov chain 

has converged, so that we only take our time average over samples drawn from the steady state 



 

Page 3 of 5 

distribution. It works on the idea that if the mean of the first 10% of iterations is not significantly 

different from the last 50%, then we can assume convergence occurred in the first 10% of the 

chain. 

Let 𝜃𝜃𝑡𝑡denote the value of the sample drawn at time 𝑡𝑡after an initial burn-in of 

𝑛𝑛0iterations, and let 𝐴𝐴 = {𝑡𝑡: 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛𝐴𝐴},𝐵𝐵 = {𝑡𝑡:𝑛𝑛𝐵𝐵 ≤ 𝑡𝑡 ≤ 𝑛𝑛}. Then let 

𝜃𝜃𝐴𝐴 =  1
𝑛𝑛𝐴𝐴
∑ 𝜃𝜃𝑡𝑡𝑡𝑡 ∈𝐴𝐴 ,𝜃𝜃𝐵𝐵 =  1

𝑛𝑛−𝑛𝑛𝐵𝐵+1
∑ 𝜃𝜃𝑡𝑡𝑡𝑡∈𝐵𝐵 . 

If the chain has converged at time 𝑛𝑛0,then the two means should be equal, and so 

Geweke’s diagnostic should converge to a standard normal as 𝑛𝑛 → ∞. Thus, if the samples from 

both means are drawn from the stationary distribution, we should have 

𝑍𝑍𝑛𝑛 =
𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵

� 1
𝑛𝑛𝐴𝐴 𝜎𝜎𝐴𝐴

2 + 1
𝑛𝑛 − 𝑛𝑛𝐵𝐵 + 1𝜎𝜎𝐵𝐵

2
→ 𝑁𝑁(0,1) 𝑛𝑛 →∞, 

where 𝜎𝜎𝐴𝐴2,𝜎𝜎𝐵𝐵2denote the variances of the two subsamples. This can be used to test the 

null hypothesis that the two samples are drawn from the same distribution. If they are not, the 

number of iterations assumed to be burn-in should be increased, and this process repeated. If this 

fails to work, then it suggests the chains are not converged by the time being considered, and that 

the chain should be run for longer. 

Running Simulations 

Simulations were run using computing resources at the University of Warwick. We ran 

each scenario 10 times on 28 cores on each of 8 nodes. This means that for each scenario, results 

are determined from a total of 2240 simulations. 

Household-level systematic non-compliance 

Here we examine a model of systematic non-compliance in which those that have 

previously attended rounds of treatment are more likely to attend future rounds, and which can 

be controlled by the magnitude of this correlation between rounds, 𝜌𝜌. We consider this 

systematic non-compliance at the household level, rather than the individual level. So it is the 

entire household that either will, or will not attend treatment. 
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To this end, let Yi = (𝑦𝑦i
1, . . . ,𝑦𝑦𝑖𝑖𝑁𝑁), where 𝑁𝑁denotes the population size, and each 𝑦𝑦𝑖𝑖 ∈

{0,1}is whether or not members of that particular household attended treatment in round 𝑖𝑖. Let 

𝜇𝜇𝑦𝑦denote the coverage we want to achieve. Take𝑌𝑌1  =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜇𝜇𝑦𝑦), and for subsequent 

rounds 𝑌𝑌𝑖𝑖  =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆𝑖𝑖), where 

𝜆𝜆𝑖𝑖 =
𝜇𝜇𝑦𝑦(1− 𝜌𝜌) + 𝜌𝜌𝑹𝑹𝒊𝒊

1 + (𝑖𝑖 − 2)𝜌𝜌 , 

and Ri= ∑ Yi𝑖𝑖−1
𝑗𝑗=1 . Then it can be shown (2) that 𝔼𝔼[𝑌𝑌𝑖𝑖]  =  𝜇𝜇𝑦𝑦,∀𝑖𝑖 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑖𝑖𝑘𝑘,𝑦𝑦𝑗𝑗𝑘𝑘)  =  𝜌𝜌. 

This is actually equivalent to assigning each household a parameter, pk, that remains fixed for all 

rounds of treatment that gives their probability of attending a round of treatment 

𝑝𝑝𝑘𝑘 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(
𝜇𝜇𝑦𝑦(1−𝜌𝜌)

𝜌𝜌 ,
(1−𝜇𝜇𝑦𝑦)(1−𝜌𝜌)

𝜌𝜌 ). In the extreme cases, we can show that the the following 

models are equivalent: 

𝜌𝜌 = 0: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

Let c denote the desired coverage. In this model, individuals attend treatment with 

probability c. So in round i, we have Xi = 1 with probability c, and 0 otherwise. 

Then Xi has mean given by 𝔼𝔼 [Xi] = c, and a variance given by Var[Xi] = c(1-c). We can 

determine the correlation between rounds as 

𝜌𝜌𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗)
𝜎𝜎𝑋𝑋𝑖𝑖𝜎𝜎𝑋𝑋𝑗𝑗

=
𝔼𝔼[𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗]−𝔼𝔼[𝑋𝑋𝑖𝑖]𝔼𝔼[𝑋𝑋𝑗𝑗]

𝑐𝑐(1− 𝑐𝑐) =
𝑐𝑐2 − 𝑐𝑐2

𝑐𝑐(1− 𝑐𝑐) = 0. 

𝜌𝜌 = 1: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

Let c denote the desired coverage. In this model, one subpopulation of size c will attend 

every round of treatment, while a sub-population of size (1-c) will never attend treatment. So the 

correlation is 1 due to each individual doing the same thing every round. 
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Appendix Figure. Probability of local elimination of transmission under different intervention strategies 

with varying numbers of rounds of TCT followed by rounds of TTT treating clinical cases and household 

contacts. Each rectangle in the figure represents a different strategy (consisting of some number of 

rounds of TCT followed by rounds of TTT). The color of the rectangle shows the probability of EOT, using 

the color bar to the right. Each twice-yearly round of TCT has 90% coverage, while TTT has 100% 

coverage and treatment is assumed to have 95% efficacy. 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28279457&dopt=Abstract
https://doi.org/10.1016/j.epidem.2017.02.002

	Modeling Treatment Strategies to Inform Yaws Eradication
	Appendix
	Finding Alpha
	Geweke Diagnostic
	Running Simulations
	Household-level systematic non-compliance

	References
	Appendix Figure. Probability of local elimination of transmission under different intervention strategies with varying numbers of rounds of TCT followed by rounds of TTT treating clinical cases and household contacts. Each rectangle in the figure repr...

