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S. pneumoniae Serotype 12F-CC4846, Japan

Reliable forecasts of the timing and spatial spread 
of influenza during seasons and pandemics can 

meaningfully advance the timing of public health 
communication campaigns and implementation of 
resource allocation in healthcare (1). Different types 
of influenza forecast methods have been developed 

and applied to support public health response (2). 
However, although modelers have shown consider-
able interest in developing infectious disease fore-
casts, the readiness in the public health community 
for applying these predictions has been lacking (3). 
One reason for this discrepancy might be that na-
tional public health policies for response to infec-
tious disease outbreaks often assign the responsibil-
ity for healthcare resource allocation to local health 
authorities (i.e., county and municipality govern-
ments). For geographic and infrastructural reasons, 
the timing of the spatial spread of influenza can dif-
fer substantially between these administrative units 
within nations and states. Therefore, a need exists 
for influenza forecasting methods that harmonize 
with policy-making responsibilities at local govern-
ment levels and that are more relevant for public 
health practitioners.

Another reason for the poor uptake of forecasting 
methods might be a lack of prospective evaluations of 
their reliability. To address this issue, the US Centers 
for Disease Control and Prevention (CDC) has run 
the Forecast the Influenza Season Collaborative Chal-
lenge (FluSight) since the 2013–14 influenza season 
to prospectively evaluate different methods and data 
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The timing of influenza case incidence during epidem-
ics can differ between regions within nations and states. 
We conducted a prospective 10-year evaluation (Janu-
ary 2008–February 2019) of a local influenza nowcasting 
(short-term forecasting) method in 3 urban counties in 
Sweden with independent public health administrations 
by using routine health information system data. Detec-
tion-of-epidemic-start (detection), peak timing, and peak 
intensity were nowcasted. Detection displayed satisfac-
tory performance in 2 of the 3 counties for all nonpan-
demic influenza seasons and in 6 of 9 seasons for the 
third county. Peak-timing prediction showed satisfactory 
performance from the influenza season 2011–12 onward. 
Peak-intensity prediction also was satisfactory for influ-
enza seasons in 2 of the counties but poor in 1 county. 
Local influenza nowcasting was satisfactory for seasonal 
influenza in 2 of 3 counties. The less satisfactory perfor-
mance in 1 of the study counties might be attributable to 
population mixing with a neighboring metropolitan area.
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sources for influenza forecasting at the national, re-
gional, and (starting in the 2017–18 influenza season) 
state level (4). At the local (county and municipality) 
level, however, few corresponding prospective evalu-
ations based on routine health system data have been 
reported. Short-term forecasting is denoted as now-
casting (5). Recently, a prospective 5-year appraisal of 
a local nowcasting method (6) in a county in Sweden 
(county population ≈460,000) indicated promising 
results with regard to detection of the local start of 
the epidemic, prediction of peak timing, and predic-
tion of peak intensity (7). The appraisal concluded 
that a longer prospective evaluation was needed to 
ascertain the validity of the results and that data from 
larger urban counties were required to draw reliable 
conclusions about generalizability.

In this article, we describe a prospective 10-year 
evaluation of this local influenza nowcasting method 
in 3 urban counties (population 1.3–2.2 million) in 
Sweden. The evaluation period included 1 pandemic 
(2009) and 9 seasonal influenza epidemics.

Methods

Study Design
We used an open cohort design based on the total 
population in 3 urban counties: Stockholm County 
(population 2,231,000), West Gothia County (popu-
lation 1,649,000), and Scania County (population 
1,304,000) (Figure 1). We used retrospective data 
from January 1, 2008, through June 30, 2009, and pro-
spective data from July 1 through February 28, 2019, 
from 2 sources in the countywide health informa-
tion system: daily numbers of clinically diagnosed 
influenza cases (Figure 2) and daily syndromic chief 
complaint data from a telenursing service (Figure 3) 
(6,7). The clinical influenza case data were used to 
detect the local start of the epidemic and prediction 
of its peak intensity, and the syndromic data were 
used to predict the peak timing. Existing evidence 
of a strong association between the clinical influenza 
case data and syndromic chief complaint data from 
the telenursing service was used in this nowcast-
ing method (8,9). Because of a change of system, no 
syndromic chief complaint data were available for 
Stockholm County. Syndromic data from West Go-
thia County were therefore used to predict the peak 
timing for Stockholm County.

Timeliness was used as a performance metric 
for detection of the local start of the epidemic and 
the peak-timing prediction; the correct identification 
of intensity category on a 5-grade scale (i.e., nonepi-
demic, low, medium, high, and very high) was used 

for peak-intensity prediction. The study design was 
approved by the Regional Research Ethics Board in 
Linköping (approval no. 2012/104-31).

Figure 1. Three regions analyzed in study of nowcasting for influenza 
epidemics in local settings, Sweden. Black indicates Stockholm 
County, red West Gothia County, gray Scania County. Included in the 
map is the island Zeeland (Sjaelland) (which is neighboring to Scania 
County). Blue indicates the city of Copenhagen (population 2 million) 
(on the island in the left lower corner of the figure).
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Definitions
Influenza cases were identified by using codes from 
the International Classification of Diseases, 10th Revi-
sion, for influenza (J10.0, J10.1, J10.8, J11.0, J11.1, J11.8) 
(10) as recorded in the local electronic health data re-
pository. Only influenza diagnoses in the first coding 
position were used. Influenza-related telenursing call 
cases were identified by using the chief complaint 
codes associated with influenza symptoms. The 
symptoms used were fever, cough, and headache. 
These data were downloaded from the electronic pa-
tient record systems to the electronic health data re-
pository twice daily.

The intensity level defining the start of a local epi-
demic (i.e., the intensity that determines the endpoint 
for the detection function) was set to 6.3 influenza-di-
agnosis cases/100,000 population recorded during a 
floating 7-day period in the countywide health infor-
mation system (6). This level was chosen by inspect-
ing the epidemic curves of previous local influenza 
epidemics. A recent comparison of influenza intensi-
ty levels in Europe estimated a similar level (6.4 influ-
enza-diagnosis cases/week/100,000 population) for 
the 2008–09 seasonal influenza in Sweden (11). The 
optimal alerting threshold before each epidemic was 
decided by calculating the sensitivity and the specific-
ity for the previous nonpandemic influenza seasons 
and studying them on a receiver operating character-
istic curve (6). The calculation of the specificity was 
based on all days in the nonepidemic period (i.e., be-
fore the limit of 6.3 influenza-diagnosis cases/100,000 

during a floating 7-day period occur), and the cal-
culation of the sensitivity was based on the days in 
the epidemic period (i.e., from when the limit of 6.3 
influenza-diagnosis cases/100,000 during a floating 
7-day period has occurred). Peak timing was defined 
as the day when the highest number of influenza-
diagnosis cases were documented in the countywide 
electronic patient record. Peak intensity was defined 
as the number of influenza-diagnosis cases that had 
been documented at peak timing.

Method Application
Technical details concerning the 3 functions of now-
casting have been described previously (6; Appendix, 
https://wwwnc.cdc.gov/EID/article/26/11/20-
0448-App1.pdf). The functions are detecting the start 
of the influenza season or pandemic and forecasting 
the peak day and peak intensity. Once the epidemic 
has been detected using the clinical influenza data, 
the syndromic telenursing data are used to detect 
when it decreases, that being the indication for the 
peak. Because changes in clinical influenza data have 
been found to occur 14 days after corresponding 
changes in syndromic data, the peak timing in the 
clinical influenza data are forecasted to occur 14 days 
after the peak in the syndromic data. Finally, the peak 
intensity is forecasted by using the clinical influenza 
data. Syndromic data have a higher amplitude, and 
the relationship between syndromic data and clinical 
influenza data are not necessarily constant between 
seasons. Therefore, the clinical data were used to  

Figure 2. Daily numbers of 
influenza-diagnosis cases per 
100,000 population, January 
1, 2008–February 28, 2019, in 
Stockholm County (upper graph), 
West Gothia County (middle 
graph), and Scania County 
(lower graph), Sweden.
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predict the intensity once the peak day is predicted 
with the help of syndromic data.

To calibrate the detection component of the 
nowcasting method, we retrospectively determined 
weekday effects on recording of influenza-diagnosis 
cases and a baseline alert threshold by using the ret-
rospective data. These data were collected from Janu-
ary 1, 2008, through June 30, 2009, including 2 non-
pandemic influenza seasons (2007–08 and 2008–09). 
To determine weekday effects, data from the entire 
retrospective data collection period were used. To de-
termine the initial alert threshold, only data from the 
seasonal influenza in 2008–09 were used. The 2007–08 
seasonal influenza could not be used for this pur-
pose because the season had started before January 
1, 2008. Throughout the study period, the calibration 
data were updated after every seasonal influenza (i.e., 
no updates of the threshold after the 2009 pandemic 
outbreak). The detection algorithm was thus applied 
to the next epidemic by using the revised threshold 
determined in the updated retrospective dataset.

Before the 2010–11 seasonal influenza, no up-
dates were performed because the set of retrospec-
tive data remained the same (i.e., it contained data 
from the 2008–09 seasonal influenza but excluded 
pandemic data). For the 2011–12 seasonal influenza, 
the threshold was updated by using retrospective 
data from the 2008–09 and 2010–11 seasonal influen-
za. For the 2012–13 seasonal influenza, the threshold 
was updated by using retrospective data from the 
2008–09, 2010–11, and 2011–12 seasonal influenza, 
and so on. The weekday effects were assumed to be 

relatively constant over time in the local detection 
analyses and were therefore not updated after every 
seasonal influenza.

The set of retrospective data from the seasonal 
influenza in 2007–08 and in 2008–09 were also used 
to initially calibrate peak-timing prediction for West 
Gothia County and Scania County. The dataset was 
used to decide the grouping of chief complaints with 
the largest correlation strength and longest lead 
time from telenursing data to influenza-diagnosis 
data (10,11). For both counties, the best performing 
telenursing chief complaint was fever (among chil-
dren and adults), and the most favorable lead time 
was 14 days. When the peak timing had been deter-
mined, the second component of the local prediction 
module was applied to influenza-diagnosis data from 
the corresponding epidemics to find the peak intensi-
ty on the predicted peak day (6). Regarding weekday 
effects on local prediction, the same calculation was 
applied and the same grouping of chief complaints 
and lead time were used throughout the study.

Metrics and Interpretations
On the basis of the utility of the nowcasting method 
in local healthcare settings, the maximum tolerable 
timeliness error for detection and peak-timing pre-
dictions was set to 11 days (≈1.5 weeks). Method 
performance was defined to be excellent if the abso-
lute value of the timeliness error was <3 days, good 
if it was 4–7 days, tolerable if it was 8–11 days, and 
poor if it was >12 days. For the interpretation of peak 
intensity predictions, the intensity level categories 

Figure 3. Daily numbers of 
telenursing calls attributable 
to fever (among children and 
adults) per 100,000 population, 
January 1, 2008–February 28, 
2019, in West Gothia County 
(upper graph) and Scania 
County (lower graph), Sweden.
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(nonepidemic <0.9, low 0.9, medium 2.4, high 5.5, 
and very high intensity level 7.9 cases/day/100,000 
population) identified using the moving epidemic 
method for the reference influenza season 2008–09 in 
Sweden (11) were used. If the predicted peak inten-
sity fell into the same category as the recorded peak 
intensity, the prediction was considered excellent. 
If the predicted peak intensity did not fall into the 
same intensity category, the predicted peak was con-
sidered good if it was up to 10% above or below the 
threshold for the recorded peak intensity category, 
tolerable if the predicted peak was 10%–20% above 
or below the threshold for the recorded peak inten-
sity category, and poor otherwise. When assessing 
series of nowcasts, the performance of a sequence of 
nowcasts was considered satisfactory if all separate 
forecasts were assessed as excellent, good, or toler-
able, and poor otherwise.

Results

Local Detection
The date of the actual start of the epidemic phase for 
the 10 influenza epidemics differed by 2–27 days be-
tween the 3 counties (Table 1). The detection compo-
nent of the local nowcasting method showed good or 
excellent performance in all counties under surveil-
lance for 6 of the 9 nonpandemic influenza seasons 
and in 2 out of 3 counties under surveillance for the 3 
remaining seasons. Twice the poor alerts were issued 
too soon and once belatedly. The detection perfor-
mance was good during the 2009 influenza A(H1N1) 
pandemic in 2 of 3 counties (Stockholm and West Go-
thia) and poor in 1 county (Scania).

Local Prediction
For the 2009 influenza pandemic, the performance 
of the peak-timing prediction was poor in all 3 study 
counties (Table 2). The peak-timing prediction was 
also poor for the 2010–11 seasonal, when influenza 
A(H1N1) and B viruses were circulating. Thereafter, 
the predictions were tolerable for the 2011–12 sea-
sonal influenza, when influenza A(H3N2) virus was 
circulating, and good to excellent for the remaining 
influenza seasons, with the exception of the poor 
peak-timing predictions for Scania County for the 
2016–17 and 2017–18 influenza seasons, with influ-
enza A(H3N2) virus circulating in 2016–17 and influ-
enza A(H3N2) and B in 2017–18.

The prediction of the peak-intensity level was 
poor for the 2009 influenza pandemic in all 3 study 
counties (Table 2). For seasonal influenza, in 2 of 
the study counties (Stockholm and West Gothia) the 

predictions were tolerable to excellent for all sea-
sons, except for the 2018–19 season with influenza 
A(H1N1) in Stockholm. In 1 county (Scania), the 
peak-intensity predictions were poor for 5 of the 9 
influenza seasons: 2010–11 with influenza A(H1N1) 
and B, 2011–12 with influenza A(H3N2), 2014–15 
with influenza A(H3N2) and B, 2015–16 with influ-
enza A(H1N1) and B, and 2017–18 with influenza 
A(H3N2) and B circulating.

Discussion
Epidemic forecasts for large administrative areas 
(e.g., nations or states) might not be sufficiently in-
formative for local response to epidemics if sizable 
variations in disease transmission patterns exist be-
tween the smaller administrative areas (e.g., coun-
ties) with independent local healthcare governance 
that they contain (12). The importance of taking the 
local context into regard in epidemic forecasting has 
been further emphasized during the current corona-
virus pandemic (13). In our prospective 10-year eval-
uation of local nowcasting in 3 urban counties, the 
start of the influenza seasons included differed by 
up to 27 days and the peak intensity by >1 intensity 
level among the counties, whereas the time-of-peak 
differences were small. The purpose of the evalu-
ated local detection function was to allow hospitals 
and primary healthcare centers time to prepare for 
management of influenza patients (e.g., by prepar-
ing intensive care unit resources or postponing 
some elective procedures). This component showed 
satisfactory performance in all 3 counties. The peak-
timing prediction function was aimed at informing 
the local authorities when the peak has occurred and 
that health service routines soon can be permitted to 
return to normal. This component showed satisfac-
tory performance from the 2011–12 influenza season 
onward. Predictions of peak timing were made 8–10 
days before the peak and were +7 days accurate in 
most cases. This finding contrasts with the current 
practices in the study counties, where the peak of an 
influenza season is retrospectively determined from 
surveillance data ≈10–14 days after it has occurred. 
The nowcasting of peak-intensity level was aimed 
at warning the local authorities about high-intensity 
influenza transmission and the potential need for 
social distancing measures (e.g., closure of kinder-
gartens). This component provided satisfactory in-
formation for influenza seasons in 2 out of 3 study 
counties (Stockholm and West Gothia).

Although the evaluated nowcasting method is 
automated to run on routinely collected healthcare 
data, the accuracy of the nowcasts depends on the 
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stability of the data supply and information infrastruc-
ture over time. The method does not require influ-
enza cases to be confirmed by a laboratory as long as 
data recording remains relatively stable. Nonetheless, 
some observations can be made about the sensitivity 
of the local nowcasts to contextual factors. In Sweden, 
vaccination adapted to the current circulating strains 
is made available free-of-cost to the elderly and risk 
groups before every influenza season. However, in the 

case of the 2009 influenza A(H1N1) pandemic, a na-
tional vaccination campaign was implemented, cover-
ing the entire population. This intervention probably 
influenced the nowcasting performance during the cor-
responding period. Looking only at the performance 
for seasonal influenza, we observed outcomes in 1 of 
the 3 study counties (Scania) that raise concerns about 
vulnerability of the nowcasts to sociodemographic 
dynamics (14). Malmö (population 450,000; capital of 

 
Table 1. Performance of the detection algorithm displayed with alert thresholds updated by using data from previous nonpandemic 
influenza seasons in evaluation of nowcasting for detection and prediction of local influenza epidemics, Sweden, 2008–2019 

Influenza virus activity 

Updated* alert threshold, 
cases/day/100,000 

population† Timeliness‡ 
Start according 

to method Actual start§ Interpretation 
2008–09 A(H3N2), initial retrospective data 
 Stockholm 0.63     
 West Gothia 0.73     
 Scania 0.25     
2009 A(H1N1) 
 Stockholm 0.63 −5 2009 Aug 24 2009 Aug 19 Good 
 West Gothia 0.73 −6 2009 Sep 3 2009 Aug 28 Good 
 Scania 0.25 18 2009 Aug 13 2009 Aug 31 Poor 
2010–11 A(H1N1) and B¶ 
 Stockholm 0.63 −7 2010 Dec 30 2010 Dec 23 Good 
 West Gothia 0.73 −12 2011 Jan 9 2010 Dec 28 Poor 
 Scania 0.25 2 2010 Dec 23 2010 Dec 25 Excellent 
2011–12 A(H3N2) 
 Stockholm 0.59 2 2012 Jan 22 2012 Jan 24 Excellent 
 West Gothia 0.43 1 2012 Jan 31 2012 Feb 1 Excellent 
 Scania 0.27 23 2012 Jan 9 2012 Feb 1 Poor 
2012–13 A(H3N2), A(H1N1), and B 
 Stockholm 0.51 −6 2013 Jan 3 2012 Dec 28 Good 
 West Gothia 0.44 0 2012 Dec 29 2012 Dec 29 Excellent 
 Scania 0.28 0 2012 Dec 27 2012 Dec 27 Excellent 
2013–14 A(H3N2), A(H1N1), and B 
 Stockholm 0.52 0 2014 Jan 30 2014 Jan 30 Excellent 
 West Gothia 0.37 1 2014 Jan 27 2014 Jan 28 Excellent 
 Scania 0.35 0 2014 Jan 28 2014 Jan 28 Excellent 
2014–15 A(H3N2) and B 
 Stockholm 0.52 −6 2015 Jan 13 2015 Jan 7 Good 
 West Gothia 0.39 0 2015 Jan 17 2015 Jan 17 Excellent 
 Scania 0.35 7 2015 Jan 16 2015 Jan 23 Good 
2015–16 A(pH1N1) and B 
 Stockholm 0.52 0 2016 Jan 2 2016 Jan 2 Excellent 
 West Gothia 0.47 16 2015 Dec 28 2016 Jan 13 Poor 
 Scania 0.34 0 2015 Dec 16 2015 Dec 16 Excellent 
2016–17 A(H3N2) 
 Stockholm 0.34 −2 2016 Dec 1 2016 Nov 29 Excellent 
 West Gothia 0.31 −2 2016 Dec 17 2016 Dec 15 Excellent 
 Scania 0.31 0 2016 Dec 10 2016 Dec 10 Excellent 
2017–18 A(H3N2) and B 
 Stockholm 0.38 0 2017 Dec 12 2017 Dec 12 Excellent 
 West Gothia 0.44 4 2017 Dec 30 2018 Jan 3 Good 
 Scania 0.34 5 2017 Dec 22 2017 Dec 27 Good 
2018–19 A(pH1N1) 
 Stockholm 0.36 −7 2018 Dec 18 2018 Dec 5 Good 
 West Gothia 0.40 −6 2018 Dec 28 2018 Dec 22 Good 
 Scania 0.34 5 2018 Dec 27 2019 Jan 1 Good 
*Threshold updated after every seasonal influenza (i.e., no updates after pandemic outbreaks). 
†Threshold determined using clinical influenza-diagnosis data. 
‡Positive value means that the algorithm issued an alarm before the local epidemic had started; negative value means that the alarm was raised after the 
start of the epidemic. 
§Actual start is the date when the retrospectively calculated intensity level reached the predefined threshold for start of an epidemic (6.3 influenza-
diagnosis cases/100,000 population recorded during a floating 7-day period) (7,11). 
¶No update of threshold before this seasonal influenza because the previous outbreak was a pandemic. 
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Scania County, Sweden) and Copenhagen (popula-
tion 2 million; capital of Denmark) are connected by 
a bridge providing for daily commuting between the 
metropolitan areas, and their labor markets are closely 
integrated. The epidemic situation in the highly cos-
mopolitan Copenhagen region might have had a stron-
ger influence on influenza epidemics in Scania County 
than the epidemic situation in the neighboring regions 
had on the other study counties. By structured intro-
duction, evaluation, and modification of prediction 
models that use additional data sources and statisti-
cal methods, local nowcasting can be adapted also to 

communities with unusual characteristics (15,16). This 
evidence-based strategy means that our method can be 
incrementally adapted to modeling of, for instance, lo-
cal rural or semirural communities in which residents 
commute extensively to a neighboring city that is not 
included in the model.

Some possible limitations exist in terms of the 
design of this prospective evaluation that require 
attention. First and foremost, whether the frame-
work used to interpret the nowcasting performance 
is adequate from the local health authority perspec-
tive should be assessed. Regarding the time-of-peak 

 
Table 2. Performance of peak-timing and peak-intensity predictions from evaluation of nowcasting for detection and prediction of local 
influenza epidemics, Sweden, 2008–2019 

Influenza virus activity 
Time-to-peak* 

 

Peak-intensity category, cases/day/100,000 
population†§ 

Prediction date Predicted Error Interpretation Predicted Factual Interpretation 
2009 A(H1N1) 
 Stockholm 2009 Sep 13 8 56 Poor  Medium (5.0) Very high (12.4) Poor 
 West Gothia 2009 Sep 13 8 56 Poor  Low (2.2) Very high (13.7) Poor 
 Scania 2009 Sep 25 10 42 Poor  Low (1.4) High (6.4) Poor 
2010–11 A(H1N1) and B 
 Stockholm 2011 Jan 14 10 28 Poor  Medium (3.4) Medium (3.5) Excellent 
 West Gothia 2011 Jan 14 10 14 Poor  Medium (4.3) High (6.1) Tolerable 
 Scania 2011 Jan 10 11 22 Poor  Medium (2.9) High (5.5) Poor 
2011–12 A(H3N2) 
 Stockholm 2012 Feb 27 8 −8 Tolerable  High (7.4) Very high (9.4) Good 
 West Gothia 2012 Feb 27 8 −8 Tolerable  High (7.8) Very high (9.6) Good 
 Scania 2012 Feb 27 8 −8 Tolerable  Medium (4.0) High (6.8) Poor 
2012–13 A(H3N2), A(H1N1), and B 
 Stockholm 2013 Feb 10 8 −7 Good  Very high (10.3) Very high (12.2) Excellent 
 West Gothia 2013 Feb 10 8 −7 Good  Very high (10.3) Very high (11.9) Excellent 
 Scania 2019 Feb 8 10 −7 Good  High (7.3) Very high (10.7) Good 
2013–14 A(H3N2), A(H1N1), and B 
 Stockholm 2014 Feb 16 8 −7 Good  Medium (2.7) Medium (3.0) Excellent 
 West Gothia 2014 Feb 16 8 −7 Good  Medium (3.5) Medium (2.9) Excellent 
 Scania 2014 Feb 17 8 −1 Excellent  Medium (3.2) Medium (4.2) Excellent 
2014–15 A(H3N2) and B 
 Stockholm 2015 Feb 22 8 6 Good  Medium (4.5) High (6.5) Tolerable 
 West Gothia 2015 Feb 22 8 6 Good  Very high (7.9) Very high (8.3) Excellent 
 Scania 2015 Feb 14 9 0 Excellent  Medium (3.9) Very high (8.1) Poor 
2015–16 A(H1N1) and B 
 Stockholm 2016 Feb 7 8 0 Excellent  High (6.7) Very high (8.2) Tolerable 
 West Gothia 2016 Feb 7 8 7 Good  High (7.6) Very high (11.6) Good 
 Scania 2016 Feb 6 9 7 Good  Medium (4.3) Very high (10.4) Poor 
2016–17 A(H3N2) 
 Stockholm 2017 Jan 1 8 −7 Good  Very high (8.2) High (6.8) Good 
 West Gothia 2017 Feb 12 8 7 Good  Medium (3.3) Medium (3.7) Excellent 
 Scania 2017 Feb 5 8 14 Poor  Medium (4.2) Medium (5.1) Excellent 
2017–18 A(H3N2) and B 
 Stockholm 2018 Feb 18 8 −7 Good  Very high (14.4) Very high (11.6) Excellent 
 West Gothia 2018 Feb 18 8 0 Excellent  Medium (5.2) High (5.9) Good 
 Scania 2018 Feb 4 8 14 Poor  Medium (4.2) Very high (14.0) Poor 
2018–19 A(H1N1) 
 Stockholm 2019 Feb 3 8 0 Excellent  Very high (14.4) High (6.2) Poor 
 West Gothia 2019 Feb 3 8 7 Good  Medium (4.0) Medium (3.4) Excellent 
 Scania 2019 Feb 3 8 −7 Good  Medium (2.8) Medium (5.2) Excellent 
*Time-to-peak (days) determined using syndromic telenursing data. Positive value means that the peak was predicted to be reached before the actual 
peak occurs, whereas negative value means that the peak is predicted after the actual peak occurs. 
†Peak-intensity category determined using clinical influenza-diagnosis data. 
§Using clinical influenza data (Table 1; https://wwwnc.cdc.gov/EID/article/26/11/20-0448-T1.htm), the start of the epidemic was detected on December 27. 
On February 1, using syndromic data, the peak in clinical influenza data was forecasted to occur 8 days later (February 9), but the peak actually occurred 
on February 2 (7 days earlier than forecasted). Also, on February 1, the clinical influenza data intensity was forecasted to be high. 
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predictions, the ongoing FluSight study uses weekly 
data (4), thus accepting forecasts made at a weekly 
resolution. The evaluation framework used to clas-
sify forecasts as excellent was at a higher temporal 
resolution (less than one half week). This boundary 
was defined from a county government perspective, 
where the attention is on local resource allocation 
(e.g., intensive-care unit facilities and hospital beds) 
for the care of influenza patients. In this situation, 
nowcasts that are off by days to weeks might have 
severe consequences for patients in need of these 
resources. Categories that are suitable for evalua-
tion of usefulness in local response preparations 
might not be suitable for interpretation of utility in 
national or international response planning. These 
observations suggest that the requirements on the 
accuracy of peak-timing predictions are context-de-
pendent and warrant further research. Concerning 
the predictions of peak intensity, evaluation of the 
peak-intensity forecasts indicated that 22% (6 of 27) 
of the seasonal influenza nowcasts were poor. Ret-
rospectively documenting baseline and threshold 
values for influenza epidemics helps define whether 
an influenza epidemic has been different in intensity 
compared with previous seasons and thereby con-
tributes to future preparedness planning (17,18). For 
the evaluation of intensity predictions in this study, 
we used the thresholds established using the mov-
ing epidemic method from the reference 2008–09 
seasonal influenza season. To improve the validity 
of the assessments, annual updates of the threshold 
values using county-level data from previous sea-
sons should be considered for future evaluations of 
local influenza nowcasting.

Longitudinal prospective evaluations might be 
needed to draw valid conclusions concerning the 
performance of local epidemic nowcasting, and inclu-
sion of data from urban counties might be required 
for generalizability (7). We found in our study that 
the performance of seasonal influenza nowcasting 
was satisfactory during a 10-year period in 3 urban 
counties regarding local detection and peak-timing 
prediction performance. The predictions of the local 
peak-intensity level were satisfactory in 2 of the study 
counties but poorer in 1 county, possibly because of 
sudden sociodemographic changes. We conclude that 
the performance of the local nowcasting method was 
satisfactory for seasonal influenza. The results are of 
general interest for local healthcare planning during 
epidemics because the precision by which healthcare 
systems can adapt its resources to the management 
of infected patients in these situations affects the re-
source availability for all other patient groups.
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