
On December 31, 2019, authorities in China no-
tified the World Health Organization (WHO) 

of a pneumonia cluster of unknown etiology in 
Wuhan (1); a novel coronavirus was subsequently 
isolated. As of March 7, 2020, coronavirus disease 
(COVID-19) and its causative agent, severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), 
had resulted in 101,927 cases and 3,486 deaths in 94 

countries spanning 6 continents (2). The spectrum 
of illness ranged from asymptomatic infection to 
mild disease (e.g., fever, dry cough, and myalgias), 
pneumonia, and death. Roughly 20% of cases re-
quire hospitalization for shortness of breath; death 
is associated with increasing age and underlying 
conditions (e.g., hypertension, cardiovascular dis-
ease, and diabetes) (3).

We review major parameters of COVID-19 trans-
mission dynamics from statistical and mathematical 
modeling studies using epidemiologic data reported 
in the first 60 days of the epidemic. We estimate the 
key components that contribute to future modeling 
on the effects of nonpharmaceutical interventions 
(NPIs) and to inform critical resource allocation de-
cisions (4). Data estimates were current as of March 
6, 2020, a few days before WHO characterized CO-
VID-19 as a pandemic on March 11, 2020 (WHO 
Director General remarks, https://www.youtube.
com/watch?v=sbT6AANFOm4), and were subject to 
change as more information becomes available.

Methods and Results
We reviewed the literature on key epidemiologic 
parameters (Table 1) relating to the COVID-19 epi-
demic. This report is not a formal systematic review 
because the epidemic is rapidly unfolding and use-
ful data sources exist that have not yet been peer 
reviewed. We searched the peer-reviewed and gray 
literature, including preprints, research reports, and 
forum posts. We conducted searches for individual 
parameters during February 25–March 6, 2020, on 
PubMed, medRxiv, bioRxiv, arXiv, SSRN, Research 
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We report key epidemiologic parameter estimates for 
coronavirus disease identified in peer-reviewed publica-
tions, preprint articles, and online reports. Range esti-
mates for incubation period were 1.8–6.9 days, serial in-
terval 4.0–7.5 days, and doubling time 2.3–7.4 days. The 
effective reproductive number varied widely, with reduc-
tions attributable to interventions. Case burden and infec-
tion fatality ratios increased with patient age. Implemen-
tation of combined interventions could reduce cases and 
delay epidemic peak up to 1 month. These parameters for 
transmission, disease severity, and intervention effective-
ness are critical for guiding policy decisions. Estimates will 
likely change as new information becomes available.
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Square, Virological, Imperial College COVID reports, 
and Wellcome Open Research. Search terms centered 
on the various names of the disease and virus over the 
course of the epidemic (“nCoV,” “COVID,” “SARS-
CoV-2,” “novel coronavirus”) and keywords relat-
ing to each of the epidemiologic parameters or char-
acteristics considered (Appendix Table 1, https://
wwwnc.cdc.gov/EID/article/26/11/20-1074-App1.
pdf). We selected genetic epidemiology estimates, 
such as evolutionary rate and time from last common 
ancestor, from Virological (http://virological.org). 
We included articles in English and Chinese if they 
used mathematical or statistical methods for adjust-
ment of different biases and if they were either peer 
reviewed or non–peer reviewed requiring established 
methods (i.e., clarity about the data used, known sta-
tistical methods, and reported uncertainty) (5–8).

For each parameter, characteristics such as study 
population, assumptions, and analytical methods 
were summarized when patterns were discernible 
across estimates. Estimates were summarized as 
ranges to reflect remaining uncertainty. No meta-
analyses were performed.

R0 and R
One of the key early indicators of transmissibility of 
a novel pathogen is R0, the basic reproduction num-
ber, which represents the average number of persons 
infected by an incident person in a fully susceptible 
population. Values for R0 that are >1 are considered a 
critical threshold for epidemic growth. Mean R0 esti-
mates for Hubei Province, China, ranged widely, 2.1–
5.1 (peer-reviewed) and 2.0–7.7 (M.S. Majumder and 
K.D. Mandl, unpub. data, https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=3524675; T. Liu et al., un-
pub. data, https://www.biorxiv.org/content/10.1101
/2020.01.25.919787v2; K. Mizumoto et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.02.
12.20022434v2.full.pdf; C. Zhou, unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.15.200

23440v2.full.pdf; H. Sun et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.17.20024
257v1; J. Li et al., unpub. data, https://www.medrxiv.
org/content/10.1101/2020.02.18.20024315v1.full.pdf; 
S. Zhao et al, unpub. data, https://www.medrxiv.
org/content/10.1101/2020.02.26.20028449v1.full.pdf; 
S. Zhao et al., unpub. data, https://doi.org/10.2139/
ssrn.3543150; Z. Zhuang et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.03.02.200
30312v1.full.pdf; S. Zhao et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.21.20026
559v1), reflecting a variety of assumptions and meth-
ods used and data uncertainty (9–17). A subset of more 
recent estimates accounted for the broad restrictions 
implemented on January 23 in Hubei explicitly and 
were lower than earlier estimates (1.0–2.9) (H. Sun et 
al., unpub. data, https://www.medrxiv.org/content
/10.1101/2020.02.17.20024257v1; L. Xu et al., unpub. 
data, https://www.medrxiv.org/content/10.1101/
2020.02.25.20024398v1; L. Zhang et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.02.
16.20023804v1). Mean R0 estimates for provinces out-
side Hubei or for all of China were similar to those for 
Hubei before the implementation of travel restrictions 
(peer-reviewed range 0.4–3.9, preprint range: 0.6–6.4) 
(11,14,18–20; T. Liu et al., unpub. data, https://www.
biorxiv.org/content/10.1101/2020.01.25.919787v2; H. 
Sun et al., unpub. data, https://www.medrxiv.org/
content/10.1101/2020.02.17.20024257v1; L. Xu et al., 
unpub. data, https://www.medrxiv.org/content/10.
1101/2020.02.25.20024398v1; L. Tindale et al., unpub. 
data, https://www.medrxiv.org/content/10.1101/
2020.03.03.20029983v1; M. Shen et al., unpub. data, 
https://www.biorxiv.org/content/10.1101/2020.0
1.23.916726v1; L. Wang et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.29.2002
9421v1.full.pdf; Ku et al., unpub. data, http://dx.doi.
org/10.2139/ssrn.3543589). R0 estimates for China and 
cases outside China attributed to exportation were 
generally lower (peer-reviewed range 2.1–3.2; preprint 
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Table 1. Key parameters and definitions for modeling of coronavirus disease 
Parameter Definition 
Basic reproduction number (R0) Average number of persons infected by a single infected individual in a fully susceptible population 
Time-varying or effective 
reproduction number (R, Rt, RE) 

Average number of persons infected by an infected individual in a population in the context of 
changing transmission patterns, such as those resulting from interventions and acquired immunity 

Incubation period Time between infection and symptom onset 
Serial interval Average time between symptom onset in a primary case and symptom onset in linked secondary 

cases 
Generation interval Average time between infection of a primary case and infection of linked secondary cases 
Doubling time Average time for the daily case count to double 
Infectious period Period during which an infected host, with or without symptoms, can transmit an infectious agent to 

susceptible persons, directly or indirectly 
Case-fatality ratio  Proportion of cases that result in death (with case defined in numerous ways) 
Infection-fatality ratio  Proportion of all infections (confirmed, symptomatic, asymptomatic) that result in death 
Mean evolutionary rate Average rate at which mutations accumulate per base pair in the genome over the course of a year 
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range 2.1– 5.7) (14,15,21; J.M. Read et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.01.
23.20018549v2.full.pdf; C. Zhang and M.Wang, unpub. 
data, https://www.biorxiv.org/content/10.1101/202
0.01.25.919688v3; Q. Zhou et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.06.20020
941v1.full.pdf; Volz et al., unpub. data, https://spiral.
imperial.ac.uk/bitstream/10044/1/77169/11/2020-
02-15-COVID19-Report-5.pdf; Q. Zhao et al., unpub. 
data, https://www.medrxiv.org/content/10.1101/2
020.02.06.20020941v1), as were estimates for the Dia-
mond Princess cruise ship (mean R0 ≈2.2) (22; S. Zhao, 
unpub. data [R0 = 2.1], https://doi.org/10.2139/
ssrn.3543150; S. Zhao, unpub. data [R0 = 2.2], https://
www.medrxiv.org/content/10.1101/2020.02.26.20028
449v1.full.pdf) and estimates for Singapore and South 
Korea (range 2.6–3.2; L. Tindale et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.
03.03.20029983v1; Z. Zhuang, unpub. data [R0 = 2.6], 
https://www.medrxiv.org/content/10.1101/2020.03.
02.20030312v1.full.pdf) were generally lower. A meta-
analysis of 7 early COVID-19 studies that accounted 
for uncertainty in assumptions estimated an R0 of 2.9 
(95% CI 2.1–4.5; S.W. Park et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.01.30.20019
877v4) (Figure 1).

High variability in R0 estimates can result from a 
mix of data (e.g., time period of cases analyzed, data 
available by onset date), methods (e.g., R0 as a com-
ponent of early exponential growth, fitting case data 
to compartmental models), and assumptions (e.g., se-
rial intervals, case ascertainment). In particular, serial 
interval estimates directly affect R0: shorter serial in-
tervals suggest that fewer transmission events are re-
quired for rapid growth. However, most R0 estimates 
reviewed here used serial intervals values between 
7.5 (COVID-19) and 8.4 (SARS); these differences like-
ly had limited effects (7,9).

R0 reflects average transmission, not individual-
level transmission. Variability (dispersion) among 
individual-level contacts and transmission potential 
can lead to many persons infecting no others, whereas 
some infect many, as previously observed for severe 
acute respiratory syndrome (SARS) and Middle East 
respiratory syndrome (MERS) (23,24). This pattern 
has also been observed for COVID-19, with estimates 
of the dispersion parameter <1 (e.g., 0.5 in Singapore 
[A. Tariq et al. unpub. data, https://www.medrxiv.
org/content/10.1101/2020.02.21.20026435v4.full.
pdf], 0.54 in China [14], 0.58 in Shenzhen [19]). These 
findings imply that a minority of cases may cause the 
majority of infections; for example, in Shenzhen, 8.9% 
of cases were found to cause 80% of infections (19). 

Rigorous contact tracing data are needed to improve 
these estimates and identify opportunities to tailor in-
terventions accordingly (25).

Explicit estimates of the time-varying or effec-
tive reproducton number, R (often referred to as Rt or 
RE), can identify changes in transmission over time 
as a result of interventions and acquired immunity. 
Mean estimates of R before January 23 generally fall 
within the ranges of 2.3–2.6 (peer-reviewed [26,27]) 
and 3.9–6.2 (preprints; T. Liu et al., unpub. data, 
https://www.biorxiv.org/content/10.1101/2020.01
.25.919787v2; C. Wang et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.03.03.2
0030593v1). Shortly after the travel restrictions, R 
estimates ranging from 0.4–1.0 (peer-reviewed) to 
0.2–3.4 (preprints) indicated a decrease in transmis-
sion in Wuhan and other parts of China (19,26; T. 
Liu et al., unpub data, https://www.biorxiv.org/ 
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Figure 1. Basic reproduction number (R0) estimates for 
coronavirus disease by date of last reported cases analyzed 
and location. Points are mean or median estimates and error 
bars indicate 90% (12,13,15) or 95% bounds (i.e., confidence 
or credible intervals). International–China estimates are those 
using international cases or exported cases from China to infer 
R0 in China or Hubei Province. Estimates for China refer to R0 
estimates at the national or province level, except for those 
exclusive estimating R0 for Hubei (China–Hubei). The gray shaded 
bar represents the time period before January 23, 2020, the date 
when broad restrictions were implemented in Hubei Province.
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content/10.1101/2020.01.25.919787v2; K. Mizumoto 
et al., unpub. data, https://www.medrxiv.org/cont
ent/10.1101/2020.02.12.20022434v1.full.pdf; C. You  
et al., unpub. data, https://www.medrxiv.org/
content/10.1101/2020.02.08.20021253v2.full.pdf; 
L.Zhang et al., unpub. data, https://www.medrxiv.
org/content/10.1101/2020.02.16.20023804v1; C.C. 
Ku et al., unpub. data, https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=3543589; C. Wang et 
al., unpub. data, https://www.medrxiv.org/cont
ent/10.1101/2020.03.03.20030593v1.full.pdf; K.C. 
Chong et al., unpub. data, https://www.medrxiv.
org/content/10.1101/2020.03.02.20028704v1.full.
pdf; D. Chen and T. Zhou, unpub data, https://
arxiv.org/pdf/2003.00305v1.pdf). In Singapore 
and South Korea, declines in R estimates also sug-
gest decreases in transmission: from 1.1 to 0.7 as of 
February 14 in Singapore, and 1.5 (95% CI 1.4–1.6) 
in South Korea up to February 27 (28; A. Tariq et 
al., unpub. data, https://www.medrxiv.org/conte
nt/10.1101/2020.02.21.20026435v6.full.pdf). The R 
estimate for the Diamond Princess cruise ship sug-
gests high transmission before and immediately af-
ter movement restrictions on the ship (median R 12.1 
[95% CrI 8.2–17.2] on February 7, 2 days postquar-
antine), with rapid decrease thereafter (median R 
0.35 [95% CrI  0.02–2.19] as of February 18) (29). To-
gether, these estimates suggest that R0 is high, yet 
intensive interventions can reduce transmissibility  
(R) substantially.

Incubation Period
The incubation period is the time between infection 
and symptom onset. Seven studies (10 estimates) 
were included in this review; the overall range 
was 1.8–9.0 days (Figure 2; Appendix Tables 2, 3) 
(9,30–33; L. Tindale et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.03.03.20
029983v1; H. Lu et al., unpub. data, https://www.
medrxiv.org/content/10.1101/2020.02.19.200250
31v1). Among the articles in peer-reviewed litera-
ture, the mean incubation period was 1.8–6.9 days 
(9,30–33).

Serial Interval
The serial interval is the average time between symp-
tom onset of a primary and transmission associated 
secondary case. Seven studies (10 estimates) estimat-
ed the mean serial interval in the range of 4.0–7.5 days 
(Figure 3; Appendix Tables 2, 3) (9,33–36; L. Tindale 
et al., unpub. data, https://www.medrxiv.org/conte
nt/10.1101/2020.03.03.20029983v1; S. Zhao et al., un-
pub. data, https://www.medrxiv.org/content/10.11
01/2020.02.21.20026559v1). Ganyani et al. estimated 
a mean generation interval of 5.21 in Singapore and 
3.95 in Tianjin, China (36).

Doubling Time
The doubling time is the average time for the dai-
ly case count to double. Using both genetic and 
case data over several locations and time periods, 
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Figure 2. Estimated 
incubation period for 
coronavirus disease based 
on search in peer-reviewed 
and gray literature. Error 
bars indicate confidence 
(blue) or credible (red) 
intervals. Gray literature 
sources: Lu et al., unpub. 
data, https://www.medrxiv.
org/content/10.1101/2020.
02.19.20025031v1, Tindale 
et al., unpub. data, https://
www.medrxiv.org/content/
10.1101/2020.03.03.20029
983v1 (also see Appendix 
Tables 2, 3). 
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11 studies estimated a mean doubling time of 2.3–7.4 
days (Figure 4, Appendix Tables 2,3) (9,11,15,17,18,21; 
A. Rambaut, unpub. data, http://virological.org/t/
phylodynamic-analysis-176-genomes-6-mar-2020/356; 
T. Bedford, unpub. data, http://virological.org/t/
phylodynamic-estimation-of-incidence-and-prev-
alence-of-novel-coronavirus-ncov-infections- 

through-time/391; F. Pinottiet al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.24.200
27326v1; S. Zhao et al., unpub. data, https://www.
medrxiv.org/content/10.1101/2020.02.06.20020941v1; 
Volz et al., unpub. data, https://spiral.imperial.ac.uk/
bitstream/10044/1/77169/11/2020-02-15-COVID19-
Report-5.pdf).
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Figure 3. Estimated serial 
interval for coronavirus disease 
based on search in peer-
reviewed and gray literature. 
Error bars indicate confidence 
(blue) or credible (red) intervals. 
Gray literature sources: Tindale 
et al., unpub. data, https://www.
medrxiv.org/content/10.1101/2
020.03.03.20029983v1, Zhao 
et al., unpub. data, https://www.
medrxiv.org/content/10.1101/20
20.02.21.20026559v1 (also see 
Appendix Tables 2, 3).

Figure 4. Estimated doubling 
time for coronavirus disease 
based on search in peer-
reviewed literature and gray 
literature. Error bars indicate 
confidence (blue) or credible 
(red) intervals. Gray literature 
sources: Onset: Zhao et al., 
unpub. data, https://www.medrxiv.
org/content/10.1101/2020.02.06.2
0020941v1 ; report: Pinotti et al., 
unpub. data, https://www.medrxiv.
org/content/10.1101/2020.02.24.
20027326v1 ; sample collection: 
Bedford, unpub. data, http://
virological.org/t/phylodynamic-
estimation-of-incidence-and-
prevalence-of-novel-coronavirus-
ncov-infections-through-time/3 
, Rambaut, unpub. data, http://
virological.org/t/phylodynamic-
analysis-176-genomes-6-
mar-2020/356 , Rambaut, 
unpub. data, http://virological.
org/t/phylodynamic-analysis-
176-genomes-6-mar-2020/356 
(same) , Volz et al., https://spiral.
imperial.ac.uk/bitstream/10044/1/77169/11/2020-02-15-COVID19-Report-5.pdf (also see Appendix Tables 2, 3).
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Infectious Period
The infectious period is the period of time in which an 
infected host, with or without symptoms, can trans-
mit to susceptible persons. One estimate (C. You et 
al., unpub. data, https://www.medrxiv.org/content
/10.1101/2020.02.08.20021253v2), based on data from 
67 cases, estimated a mean infectious period of 10.91 
days (SD 3.95 days). Little is known about how char-
acteristics of an infected person, such as age, severity, 
and clinical progression, affect overall infectious pe-
riod estimates.

Severity
We did not identify mathematical or statistical mod-
els that examine clinical disease progression. We in-
clude empiric findings detailed in the WHO China 
Mission report, which has been used to inform other 
models (37).

Most of the >75,000 cases of COVID-19 reported 
through March 6 were from Hubei Province. Among 
55,924 confirmed cases in China as of February 20, the 
median patient age was 51 years (range 2 days–100 
years); most (77.8%) patients were 30–69 years of age. 
The clinical distribution was 80.4% mild/moderate, 
13.8% severe, and 6.1% critically ill (Appendix Table 
4). Only 2.4% of reported cases were among persons 
<19 years of age (37). Severe disease was reported 
among those with increased age (>60 years) and un-
derlying conditions such as hypertension, diabetes, 
cardiovascular disease, chronic respiratory disease, 
and cancer (38). Fatality estimates have come primar-
ily from elderly Wuhan residents (39), suggesting 
substantially higher lethality compared with cases 
outside Hubei Province (Figure 5).

The age distribution of cases and deaths detect-
ed outside China has been wider than that within 
China (39). This difference may result from higher-
sensitivity surveillance for travelers compared with 
cases inside China, particularly in countries on high 
alert, such as Thailand and Japan, which implement-
ed temperature screening at airports. In general, ear-
ly severe cases were more likely to be detected than 
mild cases, resulting in higher severity estimates 
early on. Cases among travelers might also gener-
ally be in younger persons because of age-specific 
differences in travel.

A broader spectrum of clinical severity has been 
observed in travel-associated and locally acquired 
cases reported outside China, likely reflecting more 
robust surveillance for SARS-CoV-2. Severity ranges 
from asymptomatic infection to symptoms such as fe-
ver and fatigue, as well as mild to severe respiratory 
symptoms including cough and pneumonia. Cases 

have been reported in persons with previously good 
health and no known underlying conditions (40). Dif-
ferences in severity have also been observed within 
transmission chains (41–44).

The case-fatality ratio (CFR) is the proportion of 
cases that result in death. There are several variations 
of CFR, including symptomatic (sCFR), laboratory-
confirmed (cCFR), hospitalization (HFR), critical care 
(ccCFR), and infection (IFR). Eleven studies, estimat-
ing either CFR or a variation of CFR, were included 
in this review (Figure 5). Most estimates were based 
on data from China; however, a few are from out-
side China or from the Diamond Princess cruise ship 
(39,45). Estimates of CFR generally did not include 
specific case definitions and ranged from 0.9% to 
18.9%. Moreover, CFR is highly variable across situa-
tions (e.g., general population, hospitalized patients, 
or critically ill patients). Critically ill patients’ esti-
mates range between 8.0% and 28.7% (X. Deng et al., 
unpub. data, https://www.medrxiv.org/content/10
.1101/2020.03.04.20031005v1). Notably, IFR seems to 
be more consistent across studies, with central esti-
mates around 0.6% in 2 peer-reviewed studies from 
mainland China (39,45), yet higher at 3.3% in Hubei 
Province and 3% in northern Italy (A. Hauser et al., 
unpub. data, https://www.medrxiv.org/content/
medrxiv/early/2020/03/30/2020.03.04.20031104.
full.pdf), and lower at 0.2%–1.6% in Asia and Europe 
(Figure 5; Appendix  Table 5).

There was evidence of a strong age gradient in 
both CFR and IFR; elderly patients were at higher risk 
(43). IFR shows a strong age gradient; IFR was 0.007% 
in children, 1.9%–4.6% in patients 60–69 years of age, 
and 7.8%–18% in patients >80 years of age (39). Hos-
pitalization rates were also age dependent: <0.04% 
in children, 11.8% in patients 60–69 years of age, and 
18.4% among patients >80 years of age (39).

Viral Evolution and Genomic Epidemiology
Virus genome sequences from a representative sam-
ple of cases can be used for calculating the evolution-
ary rate, date of introduction to the human popula-
tion, and size of outbreak, as well as estimating the 
reproduction number and doubling time (46–49). The 
evolutionary rate is the rate at which mutations ac-
cumulate per base pair in the genome over the course 
of a year. Estimates have ranged from 0.8 × 10-3 to 1.2 
× 10-3 (Table 2; J. Sciré et al., unpub. data, http://
virological.org/t/update-2-evolutionary-epidemi-
ological-analysis-of-128-genomes/423; S. Duchene 
et al., unpub. data, http://virological.org/t/tempo-
ral-signal-and-the-evolutionary-rate-of-2019-n-cov-
using-47-genomes-collected-by-feb-01-2020/379;  
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V. Hill and A. Rambaut, unpub. data, https://
virological.org/t/phylodynamic-analysis-of-
sars-cov-2-update-2020-03-06/420; A. Rambaut, 
unpub. data, http://virological.org/t/phylodynamic- 
analysis-176-genomes-6-mar-2020/356; T. Bedford,  
unpub. data, http://virological.org/t/phylody-
namic-estimation-of-incidence-and-prevalence-
of-novel-coronavirus-ncov-infections-through-
time/391). These evolutionary rates are similar to 
those of MERS-CoV and SARS-CoV-1. The data sug-
gest that the COVID-19 outbreak was started by a 
single spillover event occurring in late 2019 (Table 
2) and supported by case-reported data in December 
2019 (50; J. Sciré et al., unpub. data, http://virologi-
cal.org/t/update-2-evolutionary-epidemiological-

analysis-of-128-genomes/423; S. Duchene et al., 
unpub. data, http://virological.org/t/temporal-
signal-and-the-evolutionary-rate-of-2019-n-cov-
using-47-genomes-collected-by-feb-01-2020/379; 
V. Hill and A. Rambaut, unpub. data, http://viro-
logical.org/t/phylodynamic-analysis-of-sars-cov-
2-update-2020-03-06/420; A. Rambaut, unpub. data, 
http://virological.org/t/phylodynamic-analysis-
176-genomes-6-mar-2020/356; T. Bedford, unpub. 
data, http://virological.org/t/phylodynamic-esti-
mation-of-incidence-and-prevalence-of-novel-coro-
navirus-ncov-infections-through-time/391; Volz 
et al., unpub. data, https://spiral.imperial.ac.uk/
bitstream/10044/1/77169/11/2020-02-15-COV-
ID19-Report-5.pdf). 
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Figure 5. Summary of IFR and 
CFR estimates for coronavirus 
disease. Circles or squares 
indicate mean or median 
estimates and error bars indicate 
confidence (dotted line) or credible 
(full line) intervals. Red indicates 
peer-reviewed and blue non–
peer-reviewed papers (for links 
to non–peer reviewed papers, 
see Appendix Table 5). *Range 
based on ≈10% ascertainment. 
†Epidemic growth alone. 
‡Epidemic growth along with other 
parameters. CFR, case fatality 
ratio; cCFR, laboratory-confirmed 
CFR; ccCFR, critical care and 
severe CFR; sCFR, symptomatic 
CFR; HFR, hospitalization fatality 
ratio; IFR, infection fatality ratio.
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Effectiveness of Nonpharmaceutical Interventions 
Nonpharmaceutical interventions (NPIs) include in-
terventions at individual and community levels. At 
the individual level, NPIs examined in modeling stud-
ies included voluntary home isolation or quarantine 
(Appendix Table 6). At the community level, NPIs 
included school and workplace closures and cancel-
ing or postponing large public gatherings (see Ap-
pendix Table 7 for definitions). Modeling can be used 
to estimate the effectiveness of components of these 
interventions (e.g., case detection), the interventions 
themselves (e.g., case isolation) or combinations of in-
terventions (e.g., case and contact isolation). In total, 29 
articles were identified; of these, 17 met the inclusion 
criteria for this review (Table 3) (11,15,18,51–56; F. Pi-
notti et al., unpub. data, https://www.medrxiv.org/
content/10.1101/2020.02.24.20027326v1; R. Niehus et 
al., unpub. data, K. Gostic et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.01.28.2001
9224v2; A. Adiga et al., unpub. data, https://www.
medrxiv.org/content/10.1101/2020.02.20.2002588
2v2; S. Lai et al., unpub. data, https://www.medrx-
iv.org/content/10.1101/2020.03.03.20029843v3.full.
pdf; Y. Zhang et al., unpub. data, https://www.me-
drxiv.org/content/10.1101/2020.03.04.20031187v1; 
S. Clifford et al., unpub. data, https://cmmid.github.
io/topics/covid19/screening-outbreak-delay.html; 

S. Bhatia et al., unpub. data, https://www.imperial.
ac.uk/media/imperial-college/medicine/sph/ide/
gida-fellowships/Imperial-College-COVID19-inter-
national-surveillance-21-02-2020.pdf).

Case Screening and Detection
Recent articles have addressed the efficacy of screen-
ing and detection by surveillance systems in different 
countries (51; F. Pinotti et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.24.2
0027326v1; R. Niehus et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.13.200
22707v2; S. Bhatia et al., unpub. data https://www.
imperial.ac.uk/media/imperial-college/medicine/
sph/ide/gida-fellowships/Imperial-College-COV-
ID19-international-surveillance-21-02-2020.pdf). Two 
studies used data from Singapore (known for having 
a reliable health reporting system) as benchmarks to 
estimate the sensitivity of surveillance systems in oth-
er countries (R. Niehus et al., unpub. data, https://
www.medrxiv.org/content/10.1101/2020.02.13.2002
2707v2; S. Bhatia et al., unpub. data, https://www.
imperial.ac.uk/media/imperial-college/medicine/
sph/ide/gida-fellowships/Imperial-College-COV-
ID19-international-surveillance-21-02-2020.pdf). Both 
articles agreed that only a fraction of cases (22%–64%) 
are captured by surveillance systems, varying by 
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Table 2. Summary of estimates of mean evolutionary rate and most recent common ancestor of COVID-19* 

Mean evolutionary rate 
(95% CI) MRCA (95% CI) 

No. 
genomes 
analyzed 

Clock 
model† 

Growth 
model Source 

NA 2019 Nov 29 
(Nov 8–Dec 16) 

23 Strict Constant Rambaut, unpub. data, 
http://virological.org/t/phylogenetic-analysis-of-23-
ncov-2019-genomes-2020-01-23/335 

1.23  10−3 (0.56  10−3 
to  1.98  10−3) 

2019 Nov 21 (Oct 
23–Dec 13) 

51 Strict Exponential Duchene et al., unpub. data, 
http://virological.org/t/temporal-signal-and-the-
evolutionary-rate-of-2019-n-cov-using-47-
genomes-collected-by-feb-01-2020/379 

1.29  10−3 (0.535  
10−4 to 2.15  10−3) 

2019 Nov 14 (Sep 
28–Dec 13) 

51 UNCL Exponential Duchene et al., unpub. data, 
http://virological.org/t/temporal-signal-and-the-
evolutionary-rate-of-2019-n-cov-using-47-
genomes-collected-by-feb-01-2020/379 

0.9  10−3 (0.5  10−3 to 
1.4  10−3) 

2019 Dec 3 (Oct 
30–Dec 17) 

51 Strict Exponential Bedford, unpub. data, 
http://virological.org/t/phylodynamic-estimation-of-
incidence-and-prevalence-of-novel-coronavirus-
ncov-infections-through-time/391 

0.92  10−3 (0.33  10−3  
to 1.4610−3) 

2019 Nov 29 (Oct 
28–Dec 20) 

75 Strict Exponential Rambaut, unpub. data, 
http://virological.org/t/phylodynamic-analysis-176-
genomes-6-mar-2020/356. Accessed March 4, 
2020 

1.04  10−3 (0.71  10−3 
to  1. 4 10−3) 

2019 Dec 3 (Nov 
16–Dec 17) 

116 Strict Exponential Hill and Rambaut, unpub. data, 
http://virological.org/t/phylodynamic-analysis-of-
sars-cov-2-update-2020-03-06/420 

7.4110−4 (4.91  10−4 
to  1.02  10−3) 

2019 Nov 27 (Nov 
7–Dec 11) 

128 Strict Birth–death 
model 

Sciré et al., unpub. data, 
http://virological.org/t/update-2-evolutionary-
epidemiological-analysis-of-128-genomes/423 

*MRCA, most recent common ancestor; NA, not applicable; UNCL, uncorrelated. 
†The clock model is a technique that uses the mutation rate to estimate the time of emergence (48). 
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country. A more recent study found similar results 
(36% detected cases), and lower ascertainment when 
repatriations were considered (F. Pinotti et al., unpub. 
data, https://www.medrxiv.org/content/10.1101/2
020.02.24.20027326v1).

Case Isolation and Quarantine of Contacts
One study considered different scenarios in which the 
reproduction number and transmission before symp-
tom onset were varied to study the controllability 

of the outbreak (51). The authors found that as R0 
increased, the percentage of contacts to be traced 
increased. The delay between symptom onset and 
isolation also affected the controllability of the out-
break. For values of R0 >2.5, contact tracing and 
isolation were successful at stopping transmission 
when <1% of transmission occurred before symp-
tom onset. For these 2 parameters, case isolation 
alone would be unlikely to control transmission 
within 3 months.
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Table 3. Summary of studies of NPIs for COVID-19 
NPI Summary/results Source/reference 
Case detection (27%–37%) cases detected† Bhatia et al., unpub. data, 

https://www.imperial.ac.uk/media/imperial-
college/medicine/sph/ide/gida-fellowships/Imperial-
College-COVID19-international-surveillance-21-02-
2020.pdf 

Case detection 38% (22%–64%) cases detected Niehus et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.02.13.2
0022707v2 

Case screening 
and detection 

(36%–65%) cases detected† Pinotti et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.02.24.2
0027326v1 

Case isolation and 
contact tracing 

Delay of symptom onset to isolation has a high impact 
on the results, affecting the controllability of the 
outbreak. Results vary by scenario. 

(51) 

Travel screening 34% (20%–50%) of travelers identified through both 
departure and arrival screening using symptoms or risk 
screening 

Gostic et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.01.28.2
0019224v2 

Travel screening 46.5% (35.9%–57.7%) travelers not detected through 
thermal screening 

(52) 

Travel screening Syndromic screening and traveler sensitization in 
combination could delay outbreaks in yet unaffected 
countries up to 83 d (75% 36 d, 97.5% 8 d). 

Clifford et al., unpub. data, 
https://cmmid.github.io/topics/covid19/screening-
outbreak-delay.html 

Travel reduction 
(transport 
suspension) 

Delay of 2.91 d (95% CI 2.54–3.29) for the arrival of the 
disease to other cities in China 

(53) 

Travel reduction 
(travel quarantine) 

130 cities in China had >50% chance of having a 
COVID-19 case imported from Wuhan in the 3 weeks 
preceding the quarantine. 

(18) 

Travel restrictions Travel restriction imposed on Wuhan delay the 
epidemic for 3 d. 

(15) 

Travel reduction 
(airline 
suspensions) 

Travel restriction imposed on China will delay the 
disease in other countries, the biggest delay being in 
Africa (11 d) and South America (9 d). 

Adiga et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.02.20.2
0025882v2 

Travel reduction Travel restriction will delay the epidemic for 2 d. (54) 
Cancellation of 
mass gathering 

37% fewer cases when the interventions started before 
the first case 

(53) 

Combination of NPI 66%, 86%, and 95% fewer cases depending on timing 
of the interventions 

Lai et al., upub. data, 
https://www.medrxiv.org/content/10.1101/2020.03.03.2
0029843v3.full.pdf 

Combination of NPI 50% fewer cases if transmissibility reduced by 25% in 
all cities in China; delay of epidemic peak for 1 month 

(11) 

Combination of NPI Drastic control measures implemented in China have 
substantially mitigated spread of COVID-19. 

(36) 

Combination of NPI Earlier intervention of social distancing could limit the 
epidemic in mainland China. Number of infections 
could be reduced up to 98.9%, and number of deaths 
could be reduced by up to 99.3% as of Feb 23, 2020. 

Zhang et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.03.04.2
0031187v1 

Community 
behavior 
modification 

At least 42% of persons interviewed have modified 
daily behavior. 

(55) 

*COVID-19, coronavirus disease; NPI, nonpharmaceutical interventions. 
†Point estimates 
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Traveler Screening
Two studies considered models in which passen-
gers were screened before leaving an area with lo-
cal transmission and upon arrival at their destina-
tion (52; K. Gostic et al., unpub. data, https://www.
medrxiv.org/content/10.1101/2020.01.28.2001922
4v2), demonstrating that a relatively low number of 
cases would likely be detected (34%–54%). Different 
factors affect the underdetection of cases, including 
the country’s ability to detect cases. Some of those 
factors include asymptomatic infections, infections 
with mild clinical symptoms, limited care-seeking 
behavior, case definition, and underrecognition of 
cases by clinicians. A third study suggests that exit 
and entry screening combined with traveler sen-
sitization can delay a local outbreak by ≥83 days, 
with <1 infected traveler per week (S. Clifford et al., 
unpub. data, https://cmmid.github.io/topics/co-
vid19/screening-outbreak-delay.html).

Travel Restrictions
On January 23, 2020, travel bans were implemented 
from Wuhan city. Within China, this resulted in a de-
lay in disease arrival of 3 days, on average (53). Cit-
ies that implemented the ban before their first case 
was detected observed fewer cases than cities that 
implemented the ban after their first case (53). An-
other study found that 130 cities in China had >50% 
chance of having a COVID-19 case imported from 
Wuhan in the 3 weeks preceding the implementa-
tion of travel restrictions, suggesting that there were 
cases outside of Wuhan before the travel ban (18). 
Analysis of the effect of the Wuhan travel ban, in-
cluding the implementation of long-range travel re-
strictions on January 23, showed no noticeable dif-
ference for the epidemic trajectory of Wuhan, while 
delaying the occurrence of cases for other locations 
in China by 3 days (15). Another study found that 
travel restrictions would delay the epidemic spread 
throughout China by 2 days (54).

Internationally, several countries implemented 
travel bans. One modeling study estimated how 
travel restrictions from China affected the time of 
arrival of the infected persons (A. Adiga et al., un-
pub. data, https://www.medrxiv.org/content/10.1
101/2020.02.20.20025882v2). It found that countries 
in Africa and South America would likely observe 
the biggest delays: 11 days for Africa and 9 days for 
South America. Another study found that travel re-
ductions of up to 90% had only a modest effect un-
less paired with public health interventions and be-
havioral changes to achieve a considerable reduction 
in disease transmission (15).

Cancellation of Events and Public Gatherings
One study analyzed a range of interventions, such as 
suspending public transport, closing entertainment 
venues, and banning public gatherings (53). Results 
varied by city and number of control measures ad-
opted; the study found that cities that implement-
ed a level 1 response (>2 control measures) before 
the first case was confirmed had 37% fewer cases 
in the week after the first case identified compared 
with cities that started control thereafter. Locations 
that closed entertainment venues and banned pub-
lic gatherings early in the outbreak reported fewer 
cases during the first week.

Finally, 4 studies estimated the effects of transmis-
sion reduction in China when NPI mitigation strat-
egies were combined (11; S. Lai et al., unpub. data, 
https://www.medrxiv.org/content/10.1101/2020.
03.03.20029843v3.full.pdf). The combined interven-
tions notably reduced the number of cases observed 
and delayed the epidemic peak by >1 month. It was 
found that earlier intervention of social distancing 
could greatly limit the epidemic in mainland China. 
The number of infections could have been reduced 
up to 98.9%, and the number of deaths reduced by 
99.3%, as of February 23, 2020 (Y. Zhang et al., unpub. 
data, https://www.medrxiv.org/content/10.1101/2
020.03.04.20031187v1). A different group found that 
following the implementation of control measures, 
growth rates became negative in most locations, and 
that drastic control measures implemented in China 
substantially mitigated COVID-19 spread (56).

Community Behavior Modification
One research group performed an online survey af-
ter the first case of COVID-19 was reported in Hong 
Kong. Those results showed that 39%–88% of the 
persons surveyed had adopted social distancing 
measures (55).

Discussion
Modeling can provide estimates of disease transmis-
sion parameters for planning and response during 
epidemics. Investigators around the world have been 
trying to understand the transmission dynamics and 
severity of disease, as well as the effects that different 
interventions have had on the course of the epidemic 
through advanced analytics and modeling. Howev-
er, transmission parameter estimates are limited by 
the availability and comprehensiveness of data early 
in the epidemic. Some parameters can be estimated 
from genetic sequencing data, but these estimates are 
heavily influenced by biases in sampling and inaccu-
racies in sequencing. Although efforts to collect and 
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share clinical, epidemiologic, and sequence data have 
been remarkably timely, there remain outstanding 
gaps in knowledge.

Several parameters presented in this review are 
context specific, such as R0 values or CFR measure-
ments. Although the characteristics of SAR-CoV-2 
are unlikely to change, responses to transmission 
will vary. Several factors affect the trajectory of an 
epidemic in different locations, such as population 
density, health system infrastructure, transportation 
robustness, cultural practices, and poverty levels 
(57). Available data from China may not be reflec-
tive of secular trends elsewhere. As other countries 
develop more cases, more robust data will be avail-
able for modeling and extrapolation for countries 
not yet affected.

Challenges in assessing severity of clinical out-
comes during a new emerging epidemic have been 
discussed in depth elsewhere and are not covered 
here (7,8). However, 4 challenges remain. First, ear-
ly in an outbreak, data are heavily biased toward 
severe cases. Estimates of the CFR in those patients 
with known outcomes may be biased upward until 
the extent of clinically milder disease is determined. 
Second, there is a period between onset of symptoms 
and final clinical outcome (death vs. survival) (58,59). 
During a growing epidemic, the final clinical outcome 
of most reported cases is typically unknown. This is 
particularly true with COVID-19, with which severe-
ly ill patients may be hospitalized for many days. The 
crude CFR will underestimate the fatality risk among 
early epidemic cases (7,8,59). Third, while the epi-
demic is growing there will be a bias toward having 
observed cases with recent symptom onset and out-
comes. Therefore, estimates should be adjusted for 
the growth rate of the epidemic (8). Fourth, overrep-
resentation of men, elderly persons with underlying 
conditions, and persons with respiratory risk factors 
(such as smoking) may result from observation bias 
or exposure differences and affect CFR estimates.

Country preparedness and clinical care capacity 
will affect patient outcomes. Delayed diagnosis and 
treatment, limited knowledge of the natural history of 
infection, and rapid escalation of cases can affect clin-
ical outcomes. Thus, fatality in patients cared for very 
early in a country’s epidemic may be greater than in 
later patients (7). More information on the proportion 
of persons requiring healthcare, level of care (outpa-
tient, inpatient, and intensive care), and duration of 
care required are essential for predicting healthcare 
needs as the epidemic progresses.

Presymptomatic or asymptomatic transmission, 
if substantial, might have critical implications for 

control efforts. Empiric evidence of such potential 
transmission includes a serial interval and genera-
tion time that were estimated shorter than the incu-
bation period (L. Tindale et al., unpub.data, https://
www.medrxiv.org/content/10.1101/2020.03.03.2002
9983v1; H. Lu et al., unpub. data, https://www.me-
drxiv.org/content/10.1101/2020.02.19.20025031v1), 
similarly high viral loads in asymptomatic and symp-
tomatic cases (36,60), and documentation of patients 
infected by presymptomatic or asymptomatic carriers 
in cluster investigations (61–64). If asymptomatic in-
fectious carriers are not characterized appropriately 
in models, epidemic infection rates would be under-
estimated but the severity and the effectiveness of in-
terventions would be overestimated, potentially lead-
ing to implementation of ineffective interventions. 
Serologic studies will be critical for understanding 
the role of asymptomatic transmission.

Early evidence suggests that travel restrictions 
result in only modest decreases in the importation of 
cases. However, combined with other social distanc-
ing measures and behavior changes, travel restric-
tions may be a useful addition. Modeling can be ex-
tremely valuable in providing counterfactuals aimed 
at disentangling the effects of different NPIs. Docu-
mentation of timing, type of NPI, and compliance rate 
will be needed to estimate the effectiveness of the dif-
ferent interventions.

This study is subject to additional limitations. To 
use the latest information, we included a number of 
preprint reports that have not been formally peer re-
viewed. In addition, there is a heavy reliance on data 
from China, because of the period considered. Given 
the recent geographic spread of COVID-19, there may 
be a range of future estimates that will differ from 
those reported here. Finally, we have not performed a 
formal assessment of possible biases of the estimates 
examined in this article, and therefore cannot exclude 
that some estimates reported are affected by unmea-
sured sources of biases.

As the COVID-19 epidemic progresses, ongoing 
refinement and validation of key epidemiologic pa-
rameters will help inform the global public health re-
sponse. Defining optimal surveillance methods, labo-
ratory testing, contact tracing parameters, quarantine 
measures, hospital acute care capacities, and many 
other operational factors depends on estimates of the 
epidemiologic parameters summarized in this article. 
One of the largest knowledge gaps is that of asymp-
tomatic or presymptomatic infectious potential and 
the occurrence of subclinical infections. In the absence 
of efficacious vaccines and therapeutics, developing an 
evidence base for NPIs will remain a critical tool for 
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effective local, national, and global outbreak control. 
Better data will enable mathematical and statistical 
modeling to more precisely predict how different NPIs 
can be combined to produce efficient epidemic control.

Our summary provides estimates through the 
first 10 weeks of the COVID-19 epidemic that are 
needed for operational planning, scenario-building 
for contingency planning, and forecasting to inform 
today’s preparedness and response efforts. Data from 
outbreaks in newly affected countries and new data 
stemming from seroprevalence and transmission 
studies will provide insights currently unavailable. 
Documenting and evaluating NPIs will help public 
health and government decision makers to imple-
ment the most effective epidemic control measures.
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