
As coronavirus disease spreads throughout the United 
States, policymakers are contemplating reinstatement 
and relaxation of shelter-in-place orders. By using a 
model capturing high-risk populations and transmis-
sion rates estimated from hospitalization data, we found 
that postponing relaxation will only delay future disease 
waves. Cocooning vulnerable populations can prevent 
overwhelming medical surges.
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In March 2020, cities and states throughout the Unit-
ed States issued social distancing orders to mitigate 

the coronavirus disease (COVID-19) pandemic (1). 
In response to growing political and economic pres-
sures, the White House and the Centers for Disease 
Control and Prevention issued guidelines for relax-
ing such measures on April 16, 2020 (2). However, 
the gating criteria in these guidelines do not include 
provisions, such as cocooning, to protect vulnerable 
populations. Residents of long-term care facilities 
(LTCFs) are particularly vulnerable because of con-
gregate living, shortages in qualified workers, and 
the need for physical contact between caregivers and 
residents. In LTCFs, cocooning includes measures to 
increase staff; cohort residents; test for severe acute 
respiratory syndrome 2 (SARS-CoV-2), the causative 
agent of COVID-19; and assess availability of per-
sonal protective equipment and other infection con-
trol resources (3). Among other groups, cocooning 
involves incentivizing persons with high-risk under-
lying conditions to remain at home, helping persons 
experiencing homelessness to social distance, and 
broadly encouraging hand hygiene and wearing face 
masks for persons at high risk for severe illness or 
death and their caregivers (4). 

By June 16, 2020, nursing home residents 
constituted 42.8% (50,919/119,055) of US COVID-19 
deaths (5). In Austin, Texas, patients in LTCFs 
represented approximately half the COVID-19 deaths 
and >20% (81/398) of COVID-19 hospitalizations 
among persons with known residence (6). 

To quantify the need for proactively protecting 
these vulnerable populations, we projected the 
effects of relaxation of shelter-in-place orders, with 
and without additional cocooning measures. We 
built a granular mathematical model of COVID-19 
spread in US cities that incorporates age-specific and 
risk-stratified heterogeneity in the transmission and 
severity of COVID-19 (Appendix, https://wwwnc.
cdc.gov/EID/article/26/12/20-1930-App.pdf) (7). 
The model uses 70 stochastic differential equations 
to track the disease status in 10 subpopulations: low-
risk and high-risk persons in each of 5 age groups, 0–4 
years, 5–17 years, 18–49 years, 50–64 years, and >64 
years of age. We focused on the Austin-Round Rock 
Metropolitan Statistical Area in Texas, the fastest-
growing large city area in the United States, because 
we provide decision support for city leaders and have 
access to patient-level COVID-19 hospitalization and 
death data. 

Persons initially are susceptible to SARS-
CoV-2 and infection rates are dependent on 
age-specific contact rates and prevalence of 
infection. Upon infection, persons incubate SARS-
CoV-2 asymptomatically before progressing to 
a symptomatic or asymptomatic infectious state. 
Depending on age and risk group, symptomatic 
COVID-19 case-patients might be hospitalized and 
die. To model cocooning of high-risk populations, we 
reduced the transmission rate to and from persons 
>64 years of age and in younger high-risk subgroups.

Social distancing began in Austin with school 
closures on March 14, 2020 and ramped up on 
March 24, 2020 with a Stay Home–Work Safe order 
(order 20200324-007; https://www.austintexas.
gov). We assumed published values for most model 
parameters (Table; Appendix) and calibrated the 
transmission rate before and after the stay-home 
order based on hospitalization counts (Figure). 
During March 24–April 23, data suggest that 
SARS-CoV-2 transmission dropped by 70% (95% 
CI 45%–100%). If social distancing measures were 
completely relaxed on May 1, 2020, we estimated 
that COVID-19 hospitalizations would surpass 
Austin’s surge capacity of 3,440 beds in 27 (95% CI 
16–43) days, on May 28 (Figure). Assuming instead 
that individual behavior and public health efforts 
continued to reduce transmission by 75% relative to 

3066	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 26, No. 12, December 2020

RESEARCH LETTERS



	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 26, No. 12, December 2020	 3067

RESEARCH LETTERS

the stay-home order, hospital surge capacity would 
be reached after 84 (95% CI 41–137) days, on July 
24. When we superimposed cocooning to reduce 
transmission risk by 125% relative to the stay-home 

period for 547,474 persons at high risk among the 
total population of 2,168,316 (Appendix), Austin 
could avoid hospital surge and reduce cumulative 
COVID-19 hospitalizations by 62% and deaths by 

Figure. Projected coronavirus disease (COVID-19) hospitalizations during February 16–December 31, 2020, in the Austin-Round Rock 
Metropolitan Statistical Area, Texas, USA, assuming strict social distancing measures are relaxed on May 1, 2020. A) To calibrate 
transmission rates before and after Austin’s March 24 Stay Home–Work Safe Order (order 20200324-007; https://www.austintexas.
gov), we used least squares to fit our age- and risk-structured susceptible-exposed-infection-recover (SEIR) compartmental model of 
COVID-19 transmission. Black dots represent daily hospitalization data for the metropolitan area from February 16–April 20, 2020. The 
curve is the median projection across 200 simulations. Shading represents 95% prediction interval, based on the estimated transmission 
reduction of 70% beginning March 24. B) Model fitting indicating the ongoing COVID-19 epidemic in Austin. Schools were closed on 
March 15 and the shelter-in-place order was issued on March 24. a) Date of possible local COVID-19 introduction, February 16; b) 
date of the first detected case reported, March 13; c) date shelter-in-place order was amended to include cloth face coverings in public, 
April 13; d) date Texas governor mandated for statewide reopening, May 1. After May 1, we project 4 scenarios in which transmission 
in low-risk and high-risk groups change relative the reductions achieved during the March 24–May 1 stay-home period: 1) a complete 
relaxation of measures with transmission rates rebounding to baseline (red); partially relaxed social distancing measures that are 75% 
as effective as the stay-home order in low-risk groups, with either 2) identical relaxation in high-risk populations (yellow), 3) cocooning 
that continues to reduce transmission in high-risk groups at the level achieved during the stay-home order (blue), or 4) enhanced 
cocooning that reduces transmission in high-risk groups further, by 125% relative to the stay home order (green). Lines indicate the 
median and shading indicates 95% CI across 200 stochastic simulations. Gray shading at bottom indicates 80% of the estimated total 
daily hospital capacity in the Austin–Round Rock MSA for COVID-19 patients of the 4,299 total beds (3,440). The projections assume 
that schools open on August 18th. C) The projected first date in 2020 that COVID-19 hospital bed requirements will exceed local 
capacity for each scenario, as indicated by corresponding colors. The right column indicates the chance that hospitalizations will not 
exceed capacity in 2020. For example, under enhanced cocooning, we would not expect hospitalizations to exceed capacity.

 
Table. Key parameters of a transmission model for coronavirus disease, Austin, Texas, USA* 
Parameter Value 
Incubation period, d (range) 2.9 (1.9–3.9) 
Infectious period, d (range) 6.3 (5.3–7.3) 
Asymptomatic proportion, % 43 
Average hospitalization, d  
 Recovered 10.96 
 Died 8.2 
Transmission reduction during Stay Home–Work Safe Order, 
% (95% CI)† 

70 (45%–100%) 

Cocooning efficacy, % reduction in transmission relative to Stay–Home Work Safe Order‡ 
 Cocooning 100 
 Enhanced cocooning 125 
Age group, y 0–4 5–17 18–49 50–64 >65 
 Symptomatic case hospitalization rate, %§      
  Low-risk group 0.0279 0.0215 1.3215 2.8563 3.3873 
  High-risk group 0.2791 0.2146 13.2154 28.5634 33.8733 
 Infected fatality rate, %‡      
  Low-risk group 0.0009 0.0022 0.0339 0.2520 0.6440 
  High-risk group 0.0092 0.0218 0.3388 2.5197 6.4402 

*Detailed parameter distributions and references are given in Appendix Tables 3, 4 (https://wwwnc.cdc.gov/EID/article/26/12/20-1930-App.pdf). 
†Estimated by fitting the model to coronavirus disease hospitalization counts March 13–April 23. 
‡The Appendix provides sensitivity analyses with respect to 2 key assumptions of the model: age-specific contact patterns, which might have changed 
during the recent unprecedented social distancing; and equally effective cocooning of persons at high risk across all age groups. Cocooning and 
enhanced cocooning are for persons >65 years of age and persons <65 years of age with high-risk underlying conditions.  
§The hospitalization rate and fatality rate for the high-risk group is assumed to be 10 times higher than the corresponding low-risk group in the same age 
range. The overall hospitalization rate and fatality rate is based on the age-specific values listed in corresponding literature. 
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70% (Appendix Table 1). Postponing relaxation 
of shelter-in-place measures would not prevent a 
second pandemic wave but could buy more time to 
protect vulnerable populations (Appendix Figure 1).

Cities likely will experience additional waves of 
COVID-19 when social distancing orders are relaxed. 
Our model indicates that Austin must aggressively 
reduce SARS-CoV-2 spread to avoid overwhelming 
hospital capacity by the end of 2020. Without 
cocooning, measures that reduce transmission with 
>90% the efficacy of the stay-home order are needed; 
with cocooning, social distancing measures for 
persons at lower risk can be more relaxed (Appendix 
Figure 1). Cocooning of older adults and persons 
with known high-risk conditions (8) can protect 
thousands in Austin and millions worldwide. The 
high-risk population in Austin, as in many cities, is 
diverse; 66% are >65 years of age, ≈5,000 are residents 
in LTCs, and almost 3,000 are persons experiencing 
homelessness (9). Cocooning should be resourced 
proactively and tailored to meet the distinct needs 
of high-risk subgroups, including work-at-home and 
paid leave programs that enable high-risk workers to 
self-isolate (10). Concerted efforts also are needed to 
shelter residents of LTCs (3) and persons experiencing 
homelessness, where risks are compounded by 
group living conditions that amplify COVID-19 
transmission. Thus, cocooning should be added 
to the national gating criteria prior to relaxation of 
social distancing.

This article was published as a preprint at  
https://www.medrxiv.org/content/10.1101/2020.05.03.2
0089920v1.
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Effects of Cocooning on Coronavirus 
Disease Rates after Relaxing Social 

Distancing 
Appendix 

Section 1. Appendix Table 1 and Appendix Figure 1 

Section 2. Stochastic Compartmental Model of COVID-19 Transmission in the Austin-Round Rock 
Metropolitan Statistical Area 

The model structure is diagrammed in Appendix Figure 2 and described in the equations 

below. 

For each age and risk group, we built a separate set of compartments to model the 

transitions between the disease states: susceptible (S), exposed (E), symptomatic infectious (IY), 

asymptomatic infectious (IA), symptomatic infectious that are hospitalized (IH), recovered (R), 

and deceased (D). The symbols S, E, IY, IA, IH, R, and D denote the number of persons in that 

state in the given age/risk group and the total size of the age/risk group is N = S + E + IY + IA + IH 

+ R + D. 

The model for persons in age group a and risk group r is given by: 

𝑑𝑑𝑆𝑆𝑎𝑎,𝑟𝑟

𝑑𝑑𝑑𝑑
= −���𝐼𝐼𝑖𝑖,𝑗𝑗𝑌𝑌 ω𝑌𝑌 + 𝐼𝐼𝑖𝑖,𝑗𝑗𝐴𝐴 ω𝐴𝐴 + 𝐸𝐸𝑖𝑖,𝑗𝑗ω𝐸𝐸�βϕ𝑎𝑎,𝑖𝑖

𝑗𝑗∈𝐾𝐾𝑖𝑖∈𝐴𝐴

/𝑁𝑁𝑖𝑖 

𝑑𝑑𝐸𝐸𝑎𝑎,𝑟𝑟

𝑑𝑑𝑑𝑑
= ���𝐼𝐼𝑖𝑖,𝑗𝑗𝑌𝑌 ω𝑌𝑌 + 𝐼𝐼𝑖𝑖,𝑗𝑗𝐴𝐴 ω𝐴𝐴 + 𝐸𝐸𝑖𝑖,𝑗𝑗ω𝐸𝐸�βϕ𝑎𝑎,𝑖𝑖

𝑗𝑗∈𝐾𝐾𝑖𝑖∈𝐴𝐴

/𝑁𝑁𝑖𝑖 − σ𝐸𝐸𝑎𝑎,𝑟𝑟 

𝑑𝑑𝐼𝐼𝑎𝑎,𝑟𝑟
𝐴𝐴

𝑑𝑑𝑑𝑑
= (1 − 𝜏𝜏)𝜎𝜎𝐸𝐸𝑎𝑎,𝑟𝑟 − 𝛾𝛾𝐴𝐴𝐼𝐼𝑎𝑎,𝑟𝑟

𝐴𝐴  

𝑑𝑑𝐼𝐼𝑎𝑎,𝑟𝑟
𝑌𝑌

𝑑𝑑𝑑𝑑
= 𝜏𝜏𝜏𝜏𝐸𝐸𝑎𝑎,𝑟𝑟 − (1 − 𝜋𝜋)𝛾𝛾𝑌𝑌𝐼𝐼𝑎𝑎,𝑟𝑟

𝑌𝑌 − 𝜋𝜋𝜋𝜋𝐼𝐼𝑎𝑎,𝑟𝑟
𝑌𝑌  
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𝑑𝑑𝐼𝐼𝑎𝑎,𝑟𝑟
𝐻𝐻

𝑑𝑑𝑑𝑑
= 𝜋𝜋𝜋𝜋𝐼𝐼𝑎𝑎,𝑟𝑟

𝑌𝑌 − (1 − 𝜈𝜈)𝛾𝛾𝐻𝐻𝐼𝐼𝑎𝑎,𝑟𝑟
𝐻𝐻 − 𝜈𝜈𝜈𝜈𝐼𝐼𝑎𝑎,𝑟𝑟

𝐻𝐻  

𝑑𝑑𝑅𝑅𝑎𝑎,𝑟𝑟

𝑑𝑑𝑑𝑑
= 𝛾𝛾𝐴𝐴𝐼𝐼𝑎𝑎,𝑟𝑟

𝐴𝐴 + (1 − 𝜋𝜋)𝛾𝛾𝑌𝑌𝐼𝐼𝑎𝑎,𝑟𝑟
𝑌𝑌 + (1 − 𝜈𝜈)𝛾𝛾𝐻𝐻𝐼𝐼𝑎𝑎,𝑟𝑟

𝐻𝐻  

𝑑𝑑𝐷𝐷𝑎𝑎,𝑟𝑟

𝑑𝑑𝑑𝑑
= 𝜈𝜈𝜈𝜈𝐼𝐼𝑎𝑎,𝑟𝑟

𝐻𝐻  

where A and K are all possible age and risk groups, ωA, ωY, and ωH are relative 

infectiousness of the IA, IY, and E compartments, respectively, 𝛽𝛽 is transmission rate, φa,i is the 

mixing rate between age group a, i∈A, γA, γY, and γH are the recovery rates for the IA, IY, and IH 

compartments, respectively, 𝜎𝜎 is the exposed rate, 𝜏𝜏 is the symptomatic ratio, 𝜋𝜋 is the proportion 

of symptomatic persons requiring hospitalization, 𝜂𝜂 is the rate at which hospitalized cases enter 

the hospital following symptom onset, 𝜈𝜈 is mortality rate for hospitalized cases, and 𝜇𝜇 is rate at 

which terminal patients die. 

We model stochastic transitions between compartments by using the 𝜏𝜏-leap method (1,2) 

with key parameters given in Appendix Table 1. Assuming that the events at each time-step are 

independent and do not affect the underlying transition rates, the numbers of each type of event 

should follow Poisson distributions with means equal to the rate parameters. We thus simulate 

the model according to the following equations: 

Sa,r (t + 1) − Sa,r (t) = −P 1 

Ea,r (t + 1) − Ea,r (t) = P 1 − P 2 

𝐼𝐼𝑎𝑎𝐴𝐴,r (t + 1) − 𝐼𝐼𝑎𝑎𝐴𝐴,r (t) = (1 − τ)P 2 − P 3 

𝐼𝐼𝑎𝑎𝑌𝑌,r (t + 1) − 𝐼𝐼𝑎𝑎𝑌𝑌,r (t) = τP 2 − P 4 − P 5 

𝐼𝐼𝑎𝑎𝐻𝐻,r (t + 1) − 𝐼𝐼𝑎𝑎𝐻𝐻,r (t) = P 5 − P 6 − P 7 

Ra,r (t + 1) − Ra,r (t) = P 3 + P 4 + P 6 

Da,r (t + 1) − Da,r (t) = P 7, 

with 

P 1 ~ Pois(Sa,r (t)F a,r (t)) 
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P 2 ~ Pois(σEa,r (t)) 

P 3 ~ Pois(γAIa
A

,r (t)) 

P 4 ~ Pois((1 − π)γY Ia
Y

,r (t)) 

P 5 ~ Pois(πηIa
Y

,r (t)) 

P 6 ~ Pois((1 − ν)γHIa
H) 

P 7 ~ Pois(νμIa
H

,r (t)) 

and where Fa,r denotes the force of infection for persons in age group  and risk group  and is 

given by:  

𝐹𝐹𝑎𝑎,𝑟𝑟(t) = ∑ ∑ �𝐼𝐼𝑖𝑖,𝑗𝑗𝑌𝑌 (𝑡𝑡)ω𝑌𝑌 + 𝐼𝐼𝑖𝑖,𝑗𝑗𝐴𝐴 (𝑡𝑡)ω𝐴𝐴 + 𝐸𝐸𝑖𝑖,𝑗𝑗(𝑡𝑡)ω𝐸𝐸�β𝑎𝑎,𝑖𝑖𝑗𝑗∈𝐾𝐾𝑖𝑖∈𝐴𝐴 ϕ𝑎𝑎,𝑖𝑖/𝑁𝑁𝑖𝑖. 

Parameter Estimation using Austin Hospitalization Data 

The city of Austin provided the total number of heads in beds for confirmed COVID-19 

patients in hospitals in Austin-Round Rock MSA from March 13 to April 24, 2020 (Appendix 

Table 2). Let H(t) be the observed and Ĥ(t) be the predicted hospitalization totals on day t, where 

predictions are made from the deterministic model formulation. We conducted least-squares 

fitting to estimate β,κ,t0, corresponding to the baseline transmission rate, the reduction in 

contacts following Austin’s Stay Home–Work Safe Order, and the initial seed date of the 

epidemic respectively. 

Fitting was conducted by using the nonlinear least squares method made available in 

SciPy (3), which minimizes the least squares error defined as LSE = (H (t) − Ĥ (t))2 (3). The best 

fit model accurately captured the hospitalization data and estimated β� = 0.035, κ� = 0.95, 𝑡̂𝑡0 = 

February 16, 2020. 

We calculated 95% confidence intervals for κ� by comparing prediction intervals from 

stochastic simulations with the hospitalization data. We ran 500 stochastic simulations for each 

of the following possible values of κ′: 0.0, 0.05, ...., 0.95, 1.0. For each value of κ′, we conducted 

the following analysis to determine if κ′ lies inside the 95% confidence interval for κ′. 

•  For all simulations, we calculate the day-to-day difference in hospitalizations (i.e., 

heads in beds) during the period following the Stay Home–Work Safe order: 𝑧̂𝑧𝑡𝑡 =

 𝐻𝐻�𝑡𝑡 − 𝐻𝐻�𝑡𝑡−1. We do the same for the actual data: 𝑧𝑧𝑡𝑡 =  𝐻𝐻𝑡𝑡��� − 𝐻𝐻𝑡𝑡−1������. 
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•  We compute the 95% prediction interval for 𝑧̂𝑧𝑡𝑡 across all 500 stochastic simulations 

for κ′ for each day t. 

•  We then conduct a test of the null hypothesis 𝐻𝐻0: κ′ =  κ. Under this null 

hypothesis, we would expect roughly 95% of the observed data (𝑧𝑧𝑡𝑡) to fall within 

the 95% prediction band for 𝑧̂𝑧𝑡𝑡 that we constructed from our simulations. By 

analyzing the day-to-day difference in hospitalizations rather than daily 

hospitalizations, we can assume that the data are independent from one day to the 

next. Then the expected number of observed values contained in the 95% 

prediction band is given by the binomial expression:  

Nobserved ~ B (Npoints, 0.95) 

where Nobserved is the number of data points contained within the 95% prediction band 

and Npoints is the total number of data points (i.e., days). 

 •  We calculate Ncontained, the actual number of data points contained within the 95% 

prediction band, and compute a p-value by identifying the probability that one 

would observe Ncontained or more extreme results under the null distribution. If 

p<0.05, we reject the null hypothesis 𝐻𝐻0: κ′ =  κ. 

Model Parameters 

Model parameters are provided in Appendix Tables 3–9. 

Section 3. Sensitivity Analyses 

Sensitivity Analysis with Respect to Age-Specific Contact Rates 

We conducted a sensitivity analysis in which we modeled the same 4 scenarios but 

without any age-specific contact rates. That is, we removed the contact matrices altogether and 

assume that transmission rates are homogeneous across the population. Under these conditions, 

we would expect cocooning to have an even larger beneficial effect (Appendix Figure 3). 

Specifically, 9% of the 200 simulations exceed hospital capacity with cocooning assuming 

homogeneous contact rates, where the number is 19% with contact matrices. The reduction in 

peak hospitalization with cocooning is also higher when assuming homogeneous mixing. This 

likely stems from our primary model (with contact matrices) assuming that persons >65 years of 
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age have fewer contacts on average than younger adults and children. In a sense, they are 

naturally cocooned by their baseline behavior. In the homogeneous contact model, this large 

high-risk group is more exposed, and thus even moderate cocooning has a large protective effect. 

Sensitivity Analysis with Respect to Cocooning of High-Risk Persons <65 Years of Age 

In the cocooned population, 34% are >65 years of age and 66% are younger persons with 

>1 chronic condition, as described in Appendix Section 4. When we restrict cocooning in our 

model to protect only persons >65 years of age, the projected epidemiologic effects are reduced 

(Appendix Figure 4). Not only does this reduce protection to only 34% of the vulnerable 

population, but it targets the subset of the high-risk population with the lowest contact rates. The 

younger high-risk populations who remain exposed are more likely to become infected and infect 

others because of their higher rates of daily contacts. 

Section 4. Estimation of Age-Stratified Proportion of Population at High Risk for 
COVID-19 Complications 

We estimated age-specific proportions of the population at high risk for complications 

from COVID-19 based on data for Austin, TX and Round-Rock, TX from the 500 Cities Project 

by the US Centers for Disease Control and Prevention (CDC) (16; Appendix Figure 5).  

We assumed that high-risk conditions for COVID-19 are the same as those specified for 

influenza by the CDC (10). The CDC’s 500 Cities Project provides city-specific estimates of 

prevalence for several of these conditions among adults (23). The estimates were obtained from 

the 2015–2016 Behavioral Risk Factor Surveillance System (BRFSS, 

https://www.cdc.gov/brfss/index.html) data by using a small-area estimation methodology called 

multilevel regression and poststratification (11,12), which links geocoded health surveys to high 

spatial resolution population demographic and socioeconomic data (12). 

Estimating High-Risk Proportions for Adults 

To estimate the proportion of adults at high risk for complications, we used CDC’s 500 

cities data, as well as data on the prevalence of HIV/AIDS, obesity, and pregnancy among adults 

(Appendix Table 10).  

The CDC 500 cities dataset includes the prevalence of each condition on its own, rather 

than the prevalence of multiple conditions (e.g., dyads or triads). Thus, we use separate 
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comorbidity estimates to determine overlap. Reference about chronic conditions (24) gives 

United States estimates for the proportion of the adult population with 0, 1, or >2 chronic 

conditions, per age group. By using this and the 500 cities data we can estimate the proportion of 

the population (pHR) in each age group in each city with >1 chronic condition listed in the CDC 

500 cities data (Appendix Table 10) putting them at high-risk for complications from influenza. 

HIV 

 We used the data from Table 20a in CDC HIV surveillance report (17)  to estimate the 

population in each risk group living with HIV in the United States (last column, 2015 data). 

Assuming independence between HIV and other chronic conditions, we increased the proportion 

of the population at high risk for influenza to account for persons with HIV but no other 

underlying conditions. 

Morbid Obesity  

A body mass index (BMI) >40 kg/m2 indicates morbid obesity and is considered high 

risk for influenza. The 500 Cities Project reports the prevalence of obese persons in each city 

with BMI >30 kg/m2 (not necessarily morbid obesity). We use the data from Table 1 in Sturm 

and Hattori (18) to estimate the proportion of persons with BMI >30 kg/m2 that actually have 

BMI >40 kg/m2 across the United States; we then apply this to the 500 cities obesity data to 

estimate the proportion of persons who are morbidly obese in each city. Table 1 of Morgan et al. 

(19) suggests that 51.2% of morbidly obese adults have >1 other high-risk chronic condition, and 

update our high-risk population estimates accordingly to account for overlap. 

Pregnancy 

We separately estimated the number of pregnant women in each age group and each city, 

following the methodology in CDC reproductive health report (25). We assume independence 

between any of the high-risk factors and pregnancy and further assume that half the population 

are women. 

Estimating High-Risk Proportions for Children 

Since the 500 Cities Project only reports data for adults >18 years of age, we took a 

different approach to estimating the proportion of children at high risk for severe influenza. The 

2 most prevalent risk factors for children are asthma and obesity; we also accounted for 

childhood diabetes, HIV, and cancer. 
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From Miller et al. (26), we obtained national estimates of chronic conditions in children. 

For asthma, we assumed that variation among cities would be similar for children and adults. 

Thus, we used the relative prevalence of asthma in adults to scale our estimates for children in 

each city. The prevalence of HIV and cancer in children are taken from CDC HIV surveillance 

report (18) and cancer research report (27). 

We first estimated the proportion of children having either asthma, diabetes, cancer, or 

HIV, assuming no overlap in these conditions. We estimated city-level morbid obesity in 

children by using the estimated morbid obesity in adults multiplied by a national constant ratio 

for each age group estimated from Hales et al. (28) that represents the prevalence in morbid 

obesity in children given the prevalence observed in adults. From Morgan et al. (19), we 

estimated that 25% of morbidly obese children have another high-risk condition and adjusted our 

final estimates accordingly. 

Resulting Estimates 

We compared our estimates for the Austin-Round Rock MSA to published national-level 

estimates (29) of the proportion of each age group with underlying high-risk conditions 

(Appendix Table 11). The biggest difference was observed in older adults, with Austin having a 

lower proportion at risk for complications from COVID-19 than the national average; for persons 

25–39 years of age, the high-risk proportion was slightly higher than the national average 

(Appendix Figure 5). 
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Appendix Table 1. Estimated time until coronavirus disease hospitalizations exceed local hospital bed surge capacity during 
February 16–December 31, 2020 based on effectiveness of various public health measures, Austin-Round Rock metropolitan 
statistical area, Texas, USA*  

Measures 
% Effectiveness† 

0 50 75 90 95 
No cocooning      
 No. days to exceed surge 
capacity 

27 (16–43) 44 (26–77) 84 (41–137) NE (133–NE) NE 

 Cumulative no. hospital beds 82,146 
(79,331–
84,276) 

68,403 
(62,593–
72,733) 

52,452 
(45,748–
59,083) 

31,018 
(5,332–
41,805) 

14,247 
(505–

33,329) 
 Cumulative no. deaths 10,139 

(9,598–10,509) 
8,046 

(7,143–8,703) 
5,822 

(4,939–6,791) 
3,192 

(437–4,501) 
1,340 

(44–3,510) 
Cocooning      
 No. days to exceed surge 
capacity 

38 (25–58) 62 (38–114) 127 (63–NE) NE NE 

 Cumulative no. hospital beds 49,637 
(45,173–
53,119) 

44,447 
(38,490–
49,568) 

37,449 
(27,611–
43,685) 

21,411 
(1,625–
33,957) 

9,905 
(336–

27,609) 
 Cumulative no. deaths 5,156 

(4,535–5,611) 
4,622 

(3,886–5,290) 
3,857 

(2,714–4,618) 
2,076 

(141–3,505) 
894 

(32–2,740) 
Enhanced cocooning      
 Days to exceed surge capacity 47 (34–68) 87 (57–173) NE NE NE 
 Cumulative hospital beds 30,778 

(28,133–
33,544) 

26,407 
(23,355–
29,384) 

19,927 
(10,070–
24,641) 

3,371 
(35–13,771) 

838 
(56–7,075) 

Cumulative deaths 2,745 
(2,473–3,048) 

2,362 
(2,056–2,698) 

1,755 
(770–2,276) 

260 
(2–1,187) 

77 
(5–613) 

*Assuming that social distancing measures are relaxed on May 1, 2020. Values are expressed as median (95% CI) across 200 stochastic 
simulations based on the parameters given in Appendix. NE, not expected to surpass the specified thresholds before December 31, 2020. 
†Compared with Stay Home–Work Safe order. 
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Appendix Table 2. Number of persons hospitalized for coronavirus disease each day during March 13–April 24, 2020, Austin-
Round Rock metropolitan area, Texas, USA 
Date No. persons hospitalized 
13 Mar 2020 1 
14 Mar 2020 1 
15 Mar 2020 1 
16 Mar 2020 1 
17 Mar 2020 1 
18 Mar 2020 1 
19 Mar 2020 5 
20 Mar 2020 7 
21 Mar 2020 6 
22 Mar 2020 9 
23 Mar 2020 10 
24 Mar 2020 17 
25 Mar 2020 22 
26 Mar 2020 25 
27 Mar 2020 25 
28 Mar 2020 29 
29 Mar 2020 32 
30 Mar 2020 41 
31 Mar 2020 44 
1 Apr 2020 52 
2 Apr 2020 56 
3 Apr 2020 57 
4 Apr 2020 63 
5 Apr 2020 65 
6 Apr 2020 69 
7 Apr 2020 69 
8 Apr 2020 70 
9 Apr 2020 71 
10 Apr 2020 75 
11 Apr 2020 76 
12 Apr 2020 75 
13 Apr 2020 81 
14 Apr 2020 82 
15 Apr 2020 80 
16 Apr 2020 80 
17 Apr 2020 79 
18 Apr 2020 78 
19 Apr 2020 79 
20 Apr 2020 83 
21 Apr 2020 78 
22 Apr 2020 82 
23 Apr 2020 78 
24 Apr 2020  75 
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Appendix Table 3. Initial conditions, school closures, and social distancing policies for coronavirus disease during 2020 in the 
Austin-Round Rock metropolitan statistical area, Texas, USA  
Variable Settings 
Initial day of simulation 16 Feb 2020 
Initial infection number in locations 1 symptomatic case in 18–49 y age group 
School closures 15 Mar–17 Aug 2020 
Age-specific and day-specific contact rates* Home, work, other and school matrices provided in Appendix Tables 6–9 
 During 16 Feb–18 Mar  
  Weekday Home + school + work + other 
  Weekend Home + other 
  Weekday holiday Home + other 
 During 19–24 Mar  
  Weekday Home + work + other 
  Weekend Home + other 
  Weekday holiday Home + other 
 During 25 Mar–17 Aug  
  Weekday (1 – 𝜅𝜅) × (home + work + other) 
  Weekend (1 – 𝜅𝜅) × (home + other) 
  Weekday holiday (1 – 𝜅𝜅) × (home + other) 
 During 18 Aug–Dec 31  
  Weekday (1 – 𝜅𝜅) × (home + school + work + other) 
  Weekend (1 – 𝜅𝜅) × (home + other) 
  Weekday holiday (1 – 𝜅𝜅) × (home + other) 

*We assume the  age-specific contact rates given in (4), which takes the contact numbers estimated through diary-based POLYMOD study in 
Europe (5) and extrapolates to the United States. The values in Appendix Tables 6–9 are the assumed daily contacts between each pair of age 
groups at home, school, work, and all other places, respectively. For example, the value of 2.0 in Table A6 row 1 column 2 means that 1 person in 
the 0–4 age group is estimated to contact 2 people daily in the 18–64 age group at home. These contact matrices are used to adjust the 
transmission rate between age groups. The accuracy of the contact matrices is limited by the following: possible biases with the original diary-based 
study (5); assumptions made when projecting the original study to the United States (4); and impacts of coronavirus disease policies and 
perceptions on daily contact patterns. 
 
 
Appendix Table 4. Model parameters* 
Parameters Values Source 
R0, basic reproduction number 2.8 Derived from fitted model 
δ, doubling time before intervention, d 2.9 Derived from fitted model 
β, baseline transmission rate 0.057 Fitted to daily COVID-19 hospitalizations in Austin-Round 

Rock MSA, Texas 
𝜅𝜅, reduction in transmission  During 25 Mar–1 May 2020, fitted to daily COVID-19 

hospitalizations in Austin-Round Rock MSA, Texas 
15 Feb–24 Mar 2020 0  
25 Mar–1 May 2020 0.7 (95% CI 0.7–1)  
25 Mar–31 Dec 2020   
 Scenario 1 0  
 Scenario 2 0.5  
 Scenario 3 0.7  
 Scenario 4 0.9  
 Scenario 5 0.95  
c, cocooning efficacy; the reduction in 
transmission relative to Austin’s Stay Home–
Work Safe Order for all high-risk groups 

 Assumption 

 Cocooning 1.0  
 Enhanced cocooning 1.25  
γA, recovery rate on asymptomatic 
compartment 

Equal to γY  

γY, recovery rate on symptomatic nontreated 
compartment 

1
γY

 ~ Triangular 
(5.3, 6.3, 7.3) 

≈γ 

(6) 

τ, symptomatic proportion, % 57 (7) 
σ, exposed rate† 1

σ
 ~ Triangular 
(1.9, 2.9, 3.9) 

≈σ 

(6,8,) 

ωA, relative infectiousness of infectious persons 
in compartment IA 

0.67 (6) 

IFR, infected fatality ratio, age specific, %  Age adjusted from R. Verity et al. (9) 
 Low-risk group   
  0–4 y 0.0009  
  5–17 y 0.0022  
  18–49 y 0.0339  
  50–64 y 0.2520  
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Parameters Values Source 
  >65 y 0.6440  
 High-risk group   
  0–4 y 0.0092  
  5–17 y 0.0218  
  18–49 y 0.3388  
  50–64 y 2.5197  
  >65 y 6.4402  
YFR, symptomatic fatality ratio, age-specific, %  Y FR = IFτR 
 Low-risk group   
  0–4 y 0.0011165  
  5–17 y 0.0027  
  18–49 y 0.0412  
  50–64 y 0.3069  
  >65 y 0.7844  
 High-risk group   
  0–4 y 0.0112  
  5–17 y 0.0265  
  18–49 y 0.4126  
  50–64 y 3.0690  
  >65 y 7.8443  
h, high-risk proportion, age-specific, %  (10–12)‡ 
 0–4 y 8.2825  
 5–17 y 14.1121  
 18–49 y 16.5298  
 50–64 y 32.9912  
 >65 y 47.0568  
rr, relative risk for high-risk compared with low-
risk persons in an age group 

10 (13) 

School calendars Austin Independent 
School District 

calendar (2019–20, 
2020–21) 

(14) 

*CDC, US Centers for Disease Control and Prevention; COVID-19, coronavirus disease; MSA, metropolitan statistical area. 
†Based on incubation (8) and presymptomatic periods (6). 
‡Estimated using 2015–2016 Behavioral Risk Factor Surveillance System (BRFSS; https://www.cdc.gov/brfss/index.html) data with multilevel 
regression and poststratification by using US Centers for Disease Control and Prevention’s list of conditions that may increase the risk for serious 
complications from influenza. 
 
 
 
Appendix Table 5. Hospitalization parameters 
Parameters Values Source 
γH: recovery rate in hospitalized 
compartment 

1/14 14 d-average from admission to discharge (UT Austin Dell 
Med) 

YHR: symptomatic case hospitalization 
rate (%) 

  Age adjusted from R. Verity et al. (9) 

 Low-risk group   
  0–4 y 0.0279  
  5–17 y 0.0215  
  18–49 y 1.3215  
  50–64 y 2.8563  
  >65 y 3.3873  
 High-risk group   
  0–4 y 0.2791 

 
 

  5–17 y 0.2146 
 

 

  18–49 y  
13.2154 

 

  50–64 y 28.5634  
  >65 y 33.8733  
π, rate of symptomatic 
individuals go to hospital, age-specific 

π = γ𝑌𝑌× 𝑌𝑌𝑌𝑌𝑌𝑌
η  +  (γ𝑌𝑌− η)𝑌𝑌𝑌𝑌𝑌𝑌

  

η, rate from symptom onset to 
hospitalized 

0.1695 5.9-day average from symptom onset to hospital admission 
Tindale et al. (15) 

µ, rate from hospitalized to death 1/14 14-day average from admission to death (UT Austin Dell 
Med) 

HFR, hospitalized fatality ratio, age-
specific, % 

 HFR = 𝐼𝐼𝐼𝐼𝐼𝐼
𝑌𝑌𝑌𝑌𝑌𝑌(1 − 𝜏𝜏)
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Parameters Values Source 
 0–4 y 4 ν = γ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

µ + (γ𝐻𝐻 − µ)𝐻𝐻𝐻𝐻𝐻𝐻
 

 5–17 y 12.365  
 18–49 y 3.122  
 50–64 y 10.745  
 >65 y 23.158  
ν, death rate on hospitalized persons, 
age-specific 

  

 0–4 y 0.0390  
 5–17 y 0.1208  
 18–49 y 0.0304  
 50–64 y 0.1049   
 >65 y 0.2269  
Healthcare capacity, no. hospital beds  4,299 Estimates provided by each of the region's hospital 

systems and aggregated by regional public health leaders 
 
 
Appendix Table 6. Home contact matrix (daily number contacts by age group at home) 
Age, y 0–4 5–17 18–49 50–64 >65 
0–4 0.5 0.9 2.0 0.1 0.0 
5–17 0.2 1.7 1.9 0.2 0.0 
18–49 0.2 0.9 1.7 0.2 0.0 
50–64 0.2 0.7 1.2 1.0 0.1 
>65 0.1 0.7 1.0 0.3 0.6 
 
 
Appendix Table 7. School contact matrix (daily number contacts by age group at school) 
Age, y 0–4 5–17 18–49 50–64 >65 
0–4 1.0 0.5 0.4 0.1 0.0 
5–17 0.2 3.7 0.9 0.1 0.0 
18–49 0.0 0.7 0.8 0.0 0.0 
50–64 0.1 0.8 0.5 0.1 0.0 
>65 0.0 0.0 0.1 0.0 0.0 
 
 
 
Appendix Table 8. Work contact matrix (daily number contacts by age group at work) 
Age, y 0–4 5–17 18–49 50–64 >65 
0–4 0.0 0.0 0.0 0.0 0.0 
5–17 0.0 0.1 0.4 0.0 0.0 
18–49 0.0 0.2 4.5 0.8 0.0 
50–64 0.0 0.1 2.8 0.9 0.0 
>65 0.0 0.0 0.1 0.0 0.0 
 
 
Appendix Table 9. Others contact matrix (daily number contacts by age group at other locations) 
Age, y 0–4 5–17 18–49 50–64 >65 
0–4 0.7 0.7 1.8 0.6 0.3 
5–17 0.2 2.6 2.1 0.4 0.2 
18–49 0.1 0.7 3.3 0.6 0.2 
50–64 0.1 0.3 2.2 1.1 0.4 
>65 0.0 0.2 1.3 0.8 0.6 
 
 
 
Appendix Table 10. Underlying conditions that put persons at high risk for influenza and data sources for prevalence estimation 
used in this model 
Condition Data source 
Cancer (except skin), chronic kidney disease, COPD, 
coronary heart disease, stroke, asthma, diabetes 

US Centers for Disease Control and Prevention (CDC) 500 cities 
(16) 

HIV/AIDS CDC HIV Surveillance report (17) 
Obesity CDC 500 cities (16); Sturm and Hattori (18); Morgan et al. (19) 
Pregnancy National Vital Statistics Reports (20) and abortion data (21) 
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Appendix Table 11. Comparison between published national estimates of the percentage of the population at high risk for 
complications of influenza or coronavirus disease and the percentage of population of Austin-Round Rock metropolitan statistical, 
Texas, USA 
Age group National estimates 

(27) 
Austin  

(excluding pregnancy) 
Pregnant women  

(proportion of age group) 
0–<6 mo NA 6.8 – 
6 mo–4 y 6.8 7.4 – 
5–9 y 11.7 11.6 – 
10–14 y 11.7 13.0 – 
15–19 y 11.8 13.3 1.7 
20–24 y 12.4 10.3 5.1 
25–34 y 15.7 13.5 7.8 
35–39 y 15.7 17.0 5.1 
40–44 y 15.7 17.4 1.2 
45–49 y 15.7 17.7 – 
50–54 y 30.6 29.6 – 
55–59 y 30.6 29.5 – 
60–64 y 30.6 29.3 – 
65–69 y 47.0 42.2 – 
70–74 y 47.0 42.2 – 
>75 y 47.0 42.2 – 
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Appendix Figure 1.  Projected daily coronavirus disease (COVID-19) hospitalizations during February 

16–December 31, 2020 in the Austin-Round Rock metropolitan statistical area with different degrees of 

transmission reduction after the relaxation of the Stay Home–Work Safe order. Solid lines indicate 

relaxation of Stay Home–Work Safe order on May 1. Dashed lines indicate relaxation of the order on July 

1. Before May 1, we estimated that social distancing reduced COVID-19 transmission by 70% relative to 

the baseline before school closures in Austin on March 15. After May 1, we considered relaxation of the 

stay-home orders for low-risk groups as scenarios in which transmission was only 50% (top left), 75% 

(top right), 90% (bottom left), and 95% (bottom right) as effective as during the Stay Home–Work Safe 

order. Blue lines assume cocooning of vulnerable populations; that is, everyone >65 years of age and 

persons with high-risk underlying conditions continue to social distance and take precautions that reduce 

their infection risk the same level as the 70% stay-home order. Green lines assume enhanced cocooning 

that is 125% as effective as the stay-home order. The yellow lines project COVID-19 cases assuming 

vulnerable populations have the same transmission reduction as the rest of the population. Lines and 

shading indicate the median and 95% prediction interval across 200 stochastic simulations. 
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Appendix Figure 2. Compartmental model of coronavirus disease (COVID-190 transmission in a US city. 

Each subgroup (defined by age and risk) is modeled with a separate set of compartments. Upon infection, 

susceptible individuals (S) progress to exposed (E) and then to either symptomatic infectious (IY) or 

asymptomatic infectious (IA). All asymptomatic cases eventually progress to a recovered class where they 

remain protected from future infection (R); symptomatic cases are either hospitalized (IH) or recover. 

Mortality (D) varies by age group and risk group and is assumed to be preceded by hospitalization.  
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Appendix Figure 3. Sensitivity analysis of hospitalizations in the Austin-Round Rock MSA from February 

16 to December 31, 2020 assuming strict social distancing measures are relaxed on May 1, 2020. Solid 

lines indicate original age-structured contact rates; dashed lines indicate homogeneous mixing. Curves 

indicate median projections of COVID-19 hospitalizations. The model fitting indicates that the ongoing 

COVID-19 epidemic in Austin was seeded by a local case around February 16, 2020; the first detected 

case was reported on March 13, 2020, schools were closed on March 15, and the shelter-in-place order 

was issued on March 24 and then amended to require cloth face coverings in public on April 13, 2020; the 

Texas governor mandated statewide reopening beginning May 1. We estimate that transmission was 

reduced by 70% under the original model (solid) and 75% under the homogeneous model (dashed) 

beginning March 24th. Following the May 1, we project four scenarios in which transmission in low risk 

and high risk groups change relative the reductions achieved during the March 24–May 1 stay-home 

period: (i) a complete relaxation of measures with transmission rates rebounding to baseline (red lines); 

partially relaxed social distancing measures that are 75% as effective as the stay-home order in low risk 

groups, with either (ii) identical relaxation in high risk populations (yellow lines), (iii) cocooning that 

continues to reduce transmission in high risk groups at the level achieved during the stay-home order 

(blue lines), or (iv) enhanced cocooning that reduces transmission in high risk groups further, by 125% 

relative to the stay home order (green lines). 
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Appendix Figure 4. Sensitivity analysis of hospitalizations in the Austin-Round Rock MSA from February 

16–December 31, 2020 assuming strict social distancing measures are relaxed on May 1, 2020. Solid 

lines indicate cocooning of all high-risk persons; dashed lines indicate cocooning only persons >65 years 

of age. Curves indicate median projections of COVID-19 hospitalizations. The model fitting indicates that 

the ongoing COVID-19 epidemic in Austin was seeded by a local case around February 16, 2020; the first 

detected case was reported on March 13, 2020, schools were closed on March 15, and the shelter-in-

place order was issued on March 24 and then amended to require cloth face coverings in public on April 

13, 2020; the Texas governor mandated statewide reopening beginning May 1. We estimate that 

transmission was reduced by 70% beginning March 24. Following May 1, we project 4 scenarios in which 

transmission in low-risk and high-risk groups changes relative to reductions achieved during the March 

24–May 1 stay-home period: (i) a complete relaxation of measures with transmission rates rebounding to 

baseline (red lines); partially relaxed social distancing measures that are 75% as effective as the stay-

home order in low risk groups, with either (ii) identical relaxation in high risk populations (yellow lines) or 

(iii) cocooning that continues to reduce transmission in high risk groups at the level achieved during the 

stay-home order (blue lines); or (iv) enhanced cocooning that reduces transmission in high risk groups 

further, by 125% relative to the stay home order (green lines). 
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Appendix Figure 5. Demographic and risk composition of the Austin-Round Rock population. Bars 

indicate age-specific population sizes, separated by low-risk, high-risk, and pregnant persons. High-risk 

persons are defined as persons with cancer, chronic kidney disease, chronic obstructive pulmonary 

disease, heart disease, stroke, asthma, diabetes, HIV/AIDS, or morbid obesity, as estimated from the 

CDC 500 Cities Project (16), reported HIV prevalence (17), and reported morbid obesity prevalence 

(18,19), corrected for multiple conditions. The population of pregnant women is derived by using CDC’s 

method combining fertility, abortion, and fetal loss rates (20–22). 


