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Appendix 

Definition of Terms 

BSI was defined according to the Centers for Disease Control and Prevention guidelines 

(http://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf). BSI onset was defined 

as the collection date of the first positive blood culture. The probable infectious source was 

determined using CDC/National Healthcare Safety Network surveillance definitions; Primary 

BSI was recorded if no source was identified 

(http://www.cdc.gov/nhsn/PDFs/pscManual/17pscNosInfDef_current.pdf). Overall mortality 

included all causes of death during hospitalization. Nosocomial infection was defined according 

to the definitions proposed by Friedman et al. (1). Empirical therapy included all antimicrobials 

administered before definitive therapy. Definitive therapy referred to antimicrobial therapy 

administered after the susceptibility testing results were available and was defined as 

“appropriate” if an adequate course of at least one drug was administered to which the pathogen 

was fully susceptible or “inappropriate” if these criteria were not met (2). 
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Toxicity Test 

The virulence of K. pneumoniae was estimated by infecting Galleria mellonella larvae as 

described previously (3). Briefly, overnight cultures of K. pneumoniae strains were washed with 

phosphate-buffered saline (PBS) and further adjusted with PBS to concentrations of 1×106 

CFU/mL. The survival rate of the G. mellonella was recorded for 48 hours. All experiments were 

done in triplicate. One ST23-K1 and one ST86-K2 isolate were used as controls, and they both 

were identified as hypervirulent K. pneumoniae in a previous study (4). 

Biofilm Production 

The biofilm assay was performed as previously described (5). Briefly, 1×107 CFU/mL 

bacteria were inoculated into MH medium in polystyrene microtiter 96-well plates and incubated 

at 37°C for 24 h. Biofilm was stained using crystal violet, followed by eluting with 95% ethanol 

and quantifying by optical density (OD) measurement (OD595). Biofilm assays were triplicated 

and in each assay quantification was performed in eight wells. 

Human Neutrophil Assay 

The human neutrophil assay was performed as previously described (6). Briefly, 

neutrophils were purified from freshly drawn venous blood of six healthy human volunteers, who 

signed written consent before participation in the study. The neutrophils were re-suspended in 

PBS (pH = 7.4) with concentration adjusted to 1×107 cell/ml, and were used immediately. The 

bactericidal activity of neutrophils was measured by incubating 1×106 neutrophils with 4×107 

CFU of opsonized K pneumoniae in 600 μl PBS at 37°C for 60 min. Then neutrophils were lysed 

with 0.1% Triton X-100 for 15 min on ice before diluting and plating on MH agar. The 

experiment was repeated twice. The bacterial survival index was expressed as the percentage of 

CFUs in the experimental test divided by CFUs in the control test. 
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Phylogenetic and Temporal Analysis 

Sequence reads of 154 ST11 isolates sequenced in this study, and of 62 isolates published 

elsewhere (7–12) were mapped to the hybrid reference assembly, KP47434, using BWA (13). 

Single nucleotide polymorphisms (SNPs) were called using an in-house pipeline with SAMtools 

and bcftools, and a pseudo-genome alignment was generated. Recombined regions were detected 

using Gubbins (14). A phylogenetic tree was constructed using the SNPs outside of the 

recombination regions with RAxML using a GTR model and gamma correction (15). An ST258 

genome was also included in a separate phylogenetic analysis, using the same methods, to 

establish the root of the ST11 tree. The phylogenetic tree and associated metadata were 

visualized together in Microreact (16) BactDating (17) was used to perform regression analysis 

of the root-to-tip genetic distance against sampling time for the 154 ST11 isolates sequenced in 

this study and to obtain a dated phylogeny based on a Bayesian approach. For both, the output 

from Gubbins was used as the input, together with the isolation dates. Default settings were used 

for the Bayesian function, except that the MCMC chain length was increased to 1 million. The 

MCMC convergence was tested by examining traces of the model parameters. The effective 

sample sizes of the model parameters were also determined using the R package, “coda,” and 

these were >200. 

Screening of ST11-KL47 and ST11-KL64 Isolates 

We retrospectively screened 1,098 clinical BSI-KP strains to detect ST11-KL47 and 

ST11-KL64 isolates. The strains were collected from 13 provinces in China during 2014–2016 in 

the frame of a national surveillance for BSIs. The 1,098 isolates were first screened by agar 

dilution to identify CRKP. The CRKP isolates were later screed through multiplex PCR with use 

of primers for wzyKL47 (Fw: GGACGCACAGTTTCCCAATTCGC; Rev: 

GCCCACATGAACCCACTTGGCA) and for wzyKL64 (Fw: 

TCAGTTCCGACCCTGATGCAGGTA; Rev: GCCAGAGCAACTATCATCCAAAGCCA) 
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according to a previous study (18). The positive isolates were further tested by MLST using the 

scheme of Institute Pasteur as described previously (19). 

S1-PFGE and Southern Blotting 

The plasmids and location of rmpA and rmpA2 genes were determined by S1-nuclease 

digestion and pulsed-field gel electrophoresis (S1-PFGE), followed with southern blotting 

hybridizations as previously described (20). Briefly, bacterial DNA was prepared in agarose 

blocks and was digested by XbaI nuclease. The digested DNA fragments were separated using 

PFGE with conditions of 14 h at 6 V/cm, 14°C, with a pulse angle of 120° and a switch time 

from 1 to 10s. The separated DNA fragments were transferred to nylon membranes (Hybond N, 

Amersham, UK), hybridized with digoxigenin-labeled rmpA or rmpA2 probes and detected using 

an NBT/BCIP color detection kit (Roche, Basel, Switzerland). 

Detection of Virulence Plasmids 

Detection of virulence plasmids was mainly dependent on BLASTn as described 

previously (21). The contigs of each genome were blasted against the reference plasmid and 

plotted by BLAST Ring Image Generator (BRIG). Two circularized virulence plasmids, pVir-

KP16932 and pVir-KP47434, were used as references. If the alignment coverage was higher than 

80% and nucleotide similarity higher than 90%, a reference-like virulence plasmid was supposed 

to be existing. 

Statistical Analysis 

The Student’s t-test (for normally distributed variables) or Mann–Whitney U test (for 

variables that are not normally distributed) was performed to evaluate continuous variables. 

Dichotomous variables were analyzed by chi-square test or Fisher exact test. The associations of 

dichotomous and ordinal variables were evaluated by Chochran-Armitage trend test. The 
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strength of all associations that emerged was determined using odds ratios (ORs) and 95% 

confidence intervals (CIs). Two-tailed tests were used to determine statistical significance. 

Variables with a P-value ≤0.05 in the univariate analysis were used in cox regression for 

multivariate analysis to identify independent predictors. Kaplan–Meier product limit method was 

used to estimate the hazard ratios, and nonparametric (log rank and Wilcoxon) tests were used to 

compare hazard ratios in different groups. In all analyses, P-values ≤0.05 were considered 

significant. All statistical analyses were carried out by using the SPSS Version 23.0 (IBM 

Corporation, Armonk, NY, USA) and SAS v9.4 (SAS institute, Cary, NC, USA). 
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Appendix 1 Figure 1. Phylogenetic tree of 216 ST11 isolates. These include 154 CRKP isolates 

collected during 2012–2017 in this study, and 62 isolates that were sequenced in previous studies. The 

phylogenetic tree was obtained by mapping all sequence reads to the hybrid assembly of KP47434, and 

removing the recombined regions from the alignment. The tree was rooted using an ST1731 isolate 

EuSCAPE_ES29 (ERR1541319). 
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Appendix 1 Figure 2. Root-to-tip regression analyses. Plots of the root-to-tip genetic distance against 

sampling time are shown for the phylogeny estimated from the alignment of 154 ST11 genomes 

sequenced in this study. Recombinant genomic regions were excluded in this analysis.  
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Appendix 1 Figure 3. Estimated dated phylogeny of CRKP-BSI-ST11. The tree shows the proportional 

relationship between branch length and time, with the bottom scale indicating time in years. The capsular 

type is shown on the right. Blue bars indicate 95% confidence intervals for ancestral dates. 
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Appendix 1 Figure 4. Recombinant genomic regions detected among the 154 CRKP-ST11 isolates. Four 

recombinant genomic regions (RD1-RD4) were predicted by Gubbins in all CRKP-ST11-KL64 isolates 

highlighted in purple, and three of these were localized around the cps region. Very small recombinant 

regions cannot be seen in this figure but the details of all recombinant regions are listed in Appendix 

Table 3. Recombination events in the cps region was also predicted in isolates with other capsule types 

(i.e., KL31, KL103 and KL105). Figure produced with Phandango. 
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Appendix 1 Figure 5. The prevalence trend of ST11-KL47 and ST11-KL64, and rmpA2-KL47 and 

rmpA/rmpA2*-KL64 in CRKP-ST11 population during 2013–2017 in a tertiary hospital in China.  
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Appendix 1 Figure 6. Results of S1-PFGE and southern blotting. Representative isolates of ST11-KL47 

and ST11-KL64 were selected for southern blotting to detect the location of rmpA2 (upper) and rmpA 

(bottom). M; marker. 
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Appendix 1 Figure 7. Comparison of virulence plasmids detected in the hybrid genome assemblies of a 

KL47 isolate KP16932 (pVir-KP16932) and a KL64 isolate KP47434 (pVir-KP47434). Using BLASTn, we 

found that pKPC-CR-HvKP4 (MF437312) and pVir-CR-HvKP267 (MG053312) show the highest 

nucleotide similarity with pVir-KP16932 and pVir-KP47434, respectively. pKPC-CR-HvKP4 was carried by 

the fatal outbreak clone of hypervirulent CRKP (KL47) reported in China recently. Plasmid housekeeping 

genes (in black), virulence genes (in red) and resistance genes (in yellow) are indicated. Highlighted 

regions represent the differences detected between pVir-KP16932 and pVir-KP47434. Grey blocks 

represent regions of sequence homology between two plasmids. 
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Appendix 1 Figure 8. Virulence plasmids detected in ST11-KL47 and ST11-KL64 isolates collected 

during 2013–2017 in this study. Plasmids pVir-KP16932 and pVir-KP47434 are as the reference to detect 

virulence plasmids in ST11-KL47 and ST11-KL64, respectively. Three or four isolates of each year of 

each subclone were randomly selected for the analysis. The contigs of each genome were blasted 

against the reference plasmid and plotted by BRIG. Most variations among virulence plasmids detected in 

ST11-KL47 were caused by gain or loss of gene clusters encoding heavy metal resistance (indicated by 

green frame), which are surrounded by mobile genetic elements (indicated by arrows). 
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Appendix 1 Figure 9. The resistome of 154 CRKP-ST11 isolates. The resistome was determined using 

the program Ariba with a custom gene database. 

 

 



 

Page 17 of 17 

Appendix 1 Figure 10. Pathogenicity of KPC2-producing Klebsiella pneumoniae ST11, China, 2013–

2017. The pathogenicity of K. pneumoniae was evaluated by assessing 3 factors. A) Biofilm production; 9 

isolates of each subclone representing various genetic backgrounds were randomly selected for the 

assay. B) Neutrophil-killing resistance; 6 isolates of each subclone representing various genetic 

backgrounds were randomly selected for the human neutrophil assays. Two typical hypervirulent K. 

pneumoniae isolates (ST23-KL1 and ST86-KL2) were used as the positive control, and a classic CRKP 

isolate (ST35-KL22) was used as the negative control. The survival of KP47434 was set as 100%, and 

the survival of the other strains were recalibrated. C) Virulence potential in a G. mellonella infection 

model; 4 isolates of each subclone representing various genetic background were randomly selected for 

the infection assay. The survival of each strain was shown by the Kaplan–Meier curve. The positive and 

negative control strains were the same as those used in the human neutrophil assays. CRKP, 

carbapenem-resistant Klebsiella pneumoniae; KL, capsular loci; ST, sequence type. 
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