Novel Rapid Test for Detecting Carbapenemase

Appendix

Supplementary Methods

The imipenem solution was prepared and used within 30 mins (stored at 4 °C during this time). Samples were physically tested in a blind and random fashion. To develop the subsequent analysis, the data were unblinded to determine the appropriate analysis thresholds. The FIBA limit of detection was 10^{9-10} CFU/ml for this panel.

The automated Python analysis for FIBA test

To quickly determine carbapenemase activity from the fluorescence time course data, a python script was developed to easily analyze the excel spreadsheet files generated by the fluorescence plate reader. The analysis is as follows: To quantify the changes of the β -lactamase activity upon the addition of imipenem, a β -lactamase inhibition index (**BI**, see equation **II**), defined as the ratio of fluorescence increase rate (**R**, see equation **I**) between wells without and with imipenem, was created. **BI** increases with imipenem inhibition (non-carbapenemase β -lactamase behavior), and an isolate with **BI** ≤ 0 is classified as carbapenemase-positive.

Among the samples with **BI**>0 in the presence of 100 μ g/ml cell membrane permeabilizer polymyxin B nonapeptide (PMBN), a parallel assay with another permeabilizer, 0.1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), was also performed. This is to rule out false negatives that may be caused by insufficient permeabilization due to bacterial polymyxin resistance. Isolates with a **BI**≤0 under the condition of CHAPS were also classified as carbapenemase-positive. All remaining isolates were classified as carbapenemase-negative.

The equations used in Python analysis:

I.

$$\mathbf{R} = \sum_{i=1}^{N} v_i$$

where v is the fluorescence increase per time step, i is the time index of the sorted v (i.e., v_1 is the largest fluorescent difference, v_2 is the second largest fluorescent difference, etc.) and N is the number of v to be summed. v was determined from a 50 second running average of the fluorescent time course, and N was set to 45.

II.

$$BI = \left(\sum_{i=1}^{N} v_i^{0 \ \mu M} \middle/ \sum_{i=1}^{N} v_i^{10 \ \mu M} \right) - BI_0$$

where v_i^C is the fluorescence increase per time step at imipenem concentration C, and BI₀, designated as the **BI** cut-off value for the enzyme inhibition, is 1.25.

Appendix Table 1. Carbapenemase-producing isolates subjected to the FIBA* te	est
--	-----

Carbapenemas	Carbapenemase category Carbapenem susceptibility‡				tibility‡	FIBA test			
Ambler class	Туре	Subtype	Species	No.†	Imi	Mer	Ert	Dor	result§
A	KPC	KPC-2	C.freundii	1	16	> 8	> 8	> 8	+
			E.cloacae	1	8	8	> 8	4	+
			K.pneumoniae	1	> 8	16	≤ 0.25	> 8	+
			M.morganii	1	8	4	8	4	+
			P.mirabilis	1	16	0.5	1	4	+
		KPC-3	E.cloacae	2	≥8	4-8	0.5	1- > 8	+
			E.coli	2	4-8	4	0.5 - 8	≤ 0.25 - 4	+
			K.ascorbata	1	4	8	8	4	+
			K.oxytoca	1	4	1	0.5	0.5	+
			K.ozaenae	1	> 8	> 64	0.5	> 8	+
			K.pneumoniae	3	> 8	> 8	≥4	> 8	+
			R.ornithinolytica	1	4	1	1	2	+
		KPC-4	E.cloacae	1	0.5	1	0.5	> 8	+
		KPC-5	P.aeruginosa	1	> 8	> 64	1	> 8	+
		KPC-6	E.cloacae	1	4	4	0.5	8	+
			P.mirabilis	1	16	2	2	2	+
	SME	SME-3	S.marcescens	2	> 8	> 64	4	≤ 0.25- 0.5	+
	NMC-A	NMC-A	E.cloacae	2	≥ 32	> 8	> 8	> 8	+
В	NDM	NDM-1	E.coli	1	8	> 16	> 8	> 8	+
			K.pneumoniae	2	> 8	> 8	1 - > 8	> 8	+
			M.morganii	1	2	8	4	> 8	+
			P.mirabilis	1	32	4	4	> 8	+
			P.rettgeri	1	8	32	4	≤ 0.25	+
			S.senftenberg	1	4	8	> 8	8	+
			A.baumannii	1	> 8	64	1	> 8	+
			Citrobacter spp.	1	16	> 8	> 8	> 8	+
			E.cloacae	1	4	32	≤ 0.25	> 8	+
		NDM-1/OXA-64	A.baumannii	1	> 8	64	0.5	> 8	+
		NDM-6	E.coli	1	16	> 8	> 8	> 8	+
	VIM	VIM-1	E.cloacae	1	4	2	2	4	+
			K.pneumoniae	1	4	4	1	4	+
		VIM-2	P.aeruginosa	2	> 64	> 8	> 8	> 8	+
		VIM-27	K.pneumoniae	1	64	> 8	> 8	> 8	+
		VIM-4	P.aeruginosa	1	> 64	> 8	> 8	4	+
	IMP	IMP-1	P.aeruginosa	1	> 64	> 8	> 8	> 8	+
		IMP-14	P.aeruginosa	1	64	> 8	> 8	> 8	+
		IMP-4	K.pneumoniae	2	1 - 4	2 - 4	2 - 4	4 - 8	+

Carbapenemase category					Carbapenem susceptibility‡			FIBA test	
Ambler class	Туре	Subtype	Species	No.†	Imi	Mer	Ert	Dor	result§
	SPM	SPM-1	P.aeruginosa	1	> 64	> 8	> 8	> 8	+
D	OXA	OXA-48	E.aerogenes	1	4	2	2	2	+
			K.pneumoniae	1	4	8	> 8	8	+
		OXA-58/100	A.baumannii	2	16 - 32	> 8	> 8	8	+
		OXA-66/72	A.baumannii	1	> 64	> 8	> 8	> 8	+
		OXA-181	K.ozaenae	1	4	4	> 8	4	+
			K.pneumoniae	1	2	4	> 8	4	+
		OXA-232	K.pneumoniae	1	4	> 8	> 8	> 8	+

*FIBA, Fluorescence identification of β-Lactamase activity.
†No., number of isolates tested.
‡MIC of the tested isolates for doripenem (Dor), ertapenem(Ert), imipenem(Imi) and meropenem(Mer).
§FIBA test result: -, negative; +, positive. All the results shown here were based on the average of two independent replicates. With the permeabilizer PMBN, there are 4 out of 57 (7%) isolates labeled as false negatives which are subsequently found positive with the permeabilizer CHAPS.

	Appendix Table 2. Non-carba	penemase-producing	isolates subjecte	d to the FIBA* test
--	-----------------------------	--------------------	-------------------	---------------------

β·	Lactamase category				FIBA test			
Туре	Subtype	Species	No.†	Imi	Mer	Ert	Dor	result§
ESBL	CTX-M-14, TEM-1B	E.coli	1	≤ 0.5	≤ 0.12	1	≤ 0.12	-
	CTX-M-15, SHV-1,	K.pneumoniae	1	1	2	> 8	2	-
	TEM-1B, OXA-1/10¶							
	CTX-M-2, SHV-83,	K.pneumoniae	1	8	> 8	> 8	> 8	-
	TEM-1A, OXA-9/10¶							
	SHV-3	E.coli	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-
	SHV-4	E.coli	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-
	SHV-12	K.pneumoniae	1	≤ 0.5	2	> 8	1	-
	SHV-12¶	K.pneumoniae	1	≤ 0.5	≤ 0.12	0.25	≤ 0.12	-
	TEM-3	E.coli	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-
	TEM-10	E.coli	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-
	TEM-12	E.coli	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-
	TEM-26	E.coli	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-
	TEM-52B	E.coli	1	≤ 0.5	0.25	1	0.25	-
AmpC	ACT-7	E.cloacae	1	≤ 0.5	≤ 0.12	0.25	≤ 0.12	-
	ACT-15	E.cloacae	1	≤ 0.5	≤ 0.12	1	≤ 0.12	-
	CMY-2	E.coli	2	≤ 0.5	≤ 0.12 - 1	≤ 0.12 - 2	≤ 0.12	-
	cAmpC	E.aerogenes	1	≤ 0.5	≤ 0.12	1	≤ 0.12	-
	cAmpC	E.cloacae	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-
ESBL&	CTX-M14; DHA-1,	K.pneumoniae	1	16	8	> 8	8	-
AmpC	SHV-11, TEM-1B¶							
	cAmpC, TEM-1B	E.cloacae	1	≤ 0.5	≤ 0.12	1	≤ 0.12	-
	CMY-2, TEM-1B	E.coli	1	≤ 0.5	≤ 0.12	≤ 0.12	≤ 0.12	-

*FIBA, fluorescence identification of β -Lactamase activity.

PIDA, indicescence identification of p-Lacianase activity.
†No., number of isolates tested.
†MIC of the tested isolates for doripenem (Dor), ertapenem(Ert), imipenem(Imi) and meropenem(Mer).
§FIBA test result: -, negative; +, positive.
¶Porin modifications were present together with β-lactamase. All the results shown here were based on the average of two independent replicates.

Appendix Figure 1. The detection of bacterial carbapenemase production by the fluorescence identification of β -lactamase activity. A) Carbapenemase producing isolates cleave β -lactamase enzyme-activated fluorophore irrespective of imipenem addition, as exemplified here by the strain # 0147 from the CDC isolate bank. B) Non-carbapenemase β -lactamases are unable to cleave β -lactamase enzyme-activated fluorophore when inhibited by imipenem, as shown here by the isolate # 0065 from the CDC isolate bank.

Appendix Figure 2. The rate of fluorescence increase in FIBA* increases with the addition of PMBN[†]. *FIBA, fluorescence identification of β-lactamase activity; [†]PMBN, polymyxin B nonapeptide; The strain used here as an illustration is a β-lactamase producing strain from ATCC (*Escherichia coli*, ATCC[®] BAA-196TM).