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Appendix 2 

Travel Data 

We used the Baidu Migration server (https://qianxi.baidu.com/) to estimate the number of 

daily travelers in and out Wuhan (Appendix 1 Table 2, 

https://wwwnc.cdc.gov/EID/article/26/7/20-0282-App1.xlsx). The server an online platform 

summarizing mobile phone travel data hosted by Baidu Huiyan (https://huiyan.baidu.com). 

Baidu Huiyan is a widely used positioning system in China. It processes >120 billion positioning 

requests daily through GPS, WIFI and other means (https://huiyan.baidu.com). Specifically, we 

extracted from the server the Immigration Index and Emigration Index for Wuhan based on cell 

phone positioning data. The indexes are linearly related to the number of travelers going in and 

out of Wuhan, respectively. We also extracted the fraction of individuals who went to or came 

from a particular province. It has been reported that there were 5 million people going out of 

Wuhan between January 10, i.e., the start of the Chinese New Year travel rush, and January 25 

(https://www.washingtonpost.com/world/asia_pacific/china-coronavirus-live-

updates/2020/01/30/1da6ea52-4302-11ea-b5fc-eefa848cde99_story.html; accessed Feb. 2, 2020). 

This allowed us to calibrate the Emigration Index and estimated the number of daily travelers to 

or from a particular province, and thus the fraction of people traveling to or from a particular 

province (Appendix 1 Table 3). 

Estimating Distributions of Epidemiologic Parameters from Individual Case 
Reports 

We used the first confirmed cases in provinces other than Hubei to inform the time 

between patient infection and the onset of symptoms (𝑛𝑛 = 24). These individuals had all traveled 
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to Wuhan a short time preceding symptoms onset. Since these individuals were the first cases 

detected in the province, it is likely that the infection occurred during their recent stay in Wuhan. 

We approximated the time of infection as the middle time point of their stay. Because the delays 

between infection and symptoms onset vary between patients, we modeled the delay using a 

gamma distribution, as its support is nonnegative and it permits relatively large delays as 

compared to the median. Figure 1 in the main text presents results from fitting the distribution to 

the data (https://wwwnc.cdc.gov/EID/article/26/7/20-0282-F1.htm). 

The fitting procedure was performed by maximizing the likelihood of observed delays 

between infection and symptoms onset. For a single observation, the individual likelihood is the 

gamma density function evaluated at the infection-to-onset delay. Some of the delays were 

censored, i.e., bounded by a certain value. For example, in some cases, only the times of 

infection and hospitalization were reported, and the time of symptom onset was missing in the 

case report. In such cases, we assumed that the missing onset time is bounded between times of 

infection and hospitalization. Then, the likelihood for this observation is equal to the cumulative 

gamma distribution evaluated at this censored value, i.e., the time when the patient was 

hospitalized. The maximum likelihood estimates (MLEs) are the shape and scale parameters that 

maximize the sum over all observations of the individual log-likelihoods. We used differential 

evolution in scipy.optimize library (Python) to perform maximization. A stochastic algorithm 

was implemented in the optimization procedure to avoid being trapped in local minima (1). The 

likelihood-based confidence intervals was computed by methods reported in Raue et al (2). 

A similar approach was adopted to fit distributions to the time between symptom onset 

and hospitalization (𝑛𝑛 = 96), between hospitalization and discharge (𝑛𝑛 = 6), and between 

hospitalization and death (𝑛𝑛 = 23). The reported dates for these events was obtained directly 

from official sources. Data from cases originating from all over China and neighboring countries 

were used for distribution fitting. Detailed patient-level data are provided in Appendix 1 Table 1. 

The “First-Arrival” Model: Inferring Disease Dynamics in Wuhan Using the First-
Arrival Times at Other Provinces 

In this model, we used the first-arrival time of a patient who traveled from Wuhan to a 

specific other province and was later confirmed to have been infected by SARS-CoV-2. The 
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rationale behind our approach is that an increasing fraction of people infected in Wuhan 

increases the likelihood that one such case is exported to the other provinces. Hence, how soon 

new cases are observed in other provinces can inform the disease progression in Wuhan. We 

hypothesize that this information is more reliable because the infected population in Wuhan 

needs to sufficiently large to allow probable export of one infected individual. The flow of 

expected cases depends on the flow of travelers to each province and on the proportion of the 

Wuhan population that is infected by the virus. 

We first estimated the daily number of travelers from Wuhan to each of the China 

provinces. For this purpose, we used Wuhan’s daily migration index to other provinces and the 

daily distribution of traveler destinations from Wuhan (see Data Collection). When assuming 

linearity between the migration index and the total number of exported individuals, it can be 

estimated that a migration index of 1 is approximately equal to 5 million individuals over the 

sum of migration indexes from January 10 to January 25, 2020 (it was reported that 5 million 

individuals left Wuhan during that period; see Data Collection section). The total number of 

daily Wuhan travelers to a province at a certain date was then set equal to the number of travelers 

estimated from the migration index times the fraction of the population having traveled to this 

province. Results from estimation are reported in Appendix 1 Table 2. 

An infected traveler may be pre-symptomatic, i.e., this individual may have been exposed 

to the virus (𝐸𝐸) and not have developed symptoms or be already symptomatic (𝐼𝐼). In fact, for 

many individuals, infection onset was recorded days after the time of their departure from 

Wuhan (see Appendix 1 Table 1). Assuming travelers represent a random sample of the whole 

population, it follows that the probability that a traveler is infected is equal to the number of 

exposed or infected individuals in Wuhan (𝐼𝐼∗ = 𝐸𝐸 + 𝐼𝐼) over the total Wuhan population (𝑁𝑁(𝑡𝑡)). 

The total population size varied during the infection period. We estimated the population size by 

using the daily inflow and outflow of individuals from Wuhan (see Appendix 1 Table 2). To 

represent the beginning of an outbreak, we modeled an exponential increase in the size of 

exposed and infected population over time 𝑡𝑡: 

where 𝑟𝑟 is the infection growth rate and 𝑡𝑡0 is the time of onset of exponential outbreak. 

 𝐼𝐼∗(𝑡𝑡) = 𝑒𝑒𝑟𝑟(𝑡𝑡−𝑡𝑡0) (Equation 1) 
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Equation 1 allows a simple analytic expression of the likelihood of arrival times for the 

first cases in each of the provinces other than Hubei. For a specific province, indexed by 𝑖𝑖, we 

modeled the arrival of new cases in each province during short time intervals as a Poisson 

random process 𝑋𝑋𝑡𝑡
(𝑖𝑖). Note that the rate parameter of this Poisson process, 𝜆𝜆(𝑡𝑡) =

 𝐼𝐼∗(𝑡𝑡) 𝜅𝜅𝑖𝑖(𝑡𝑡)/𝑁𝑁(𝑡𝑡) depends on the time-varying sum of exposed and symptomatic populations 

𝐼𝐼∗(𝑡𝑡), the time varying flow of population 𝜅𝜅𝑖𝑖(𝑡𝑡) transported from Wuhan to the province 𝑖𝑖 and 

the time varying population size. It can be shown mathematically (3) that the probability that no 

exposed or symptomatic traveler arrived to province 𝑖𝑖 during a short time interval (𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡), 

Δ𝑡𝑡 ≪ 1 is: 

We assume no delay was incurred due transportation in our model. Equation 2 is valid for 

any 𝑡𝑡 > 0, and because the overall process is Markovian, we can formulate the probability that 

the time of arrival of the first case in province 𝑖𝑖, 𝑇𝑇(𝑖𝑖), is later than 𝑡𝑡 by: 

where [𝑡𝑡0, 𝑡𝑡) was partitioned into 𝑀𝑀 equal intervals of Δ𝑡𝑡 = 𝑗𝑗(𝑡𝑡 − 𝑡𝑡0)/𝑀𝑀, and we convert the 

Riemannian sum into an integral in the limit of 𝑀𝑀 → ∞ (Δ𝑡𝑡 → 0). Finally, we apply d/d𝑡𝑡 to 1 −

ℙ�𝑇𝑇(𝑖𝑖) > 𝑡𝑡� to obtain the probability density function (PDF) of the first-arrival time of province 

𝑖𝑖: 

The form of the probability density function Equation 4 was used to estimate the 

likelihood of observed arrival times in each province as a function of the growth rate 𝑟𝑟 and 

outbreak initiation time 𝑡𝑡0. This likelihood was maximized, again using differential_evolution in 

scipy.optimize (1), and the confidence intervals for 𝑟𝑟 and 𝑡𝑡0 were obtained through profile 

likelihood (2). Numerical integration was performed by discretizing time in daily time intervals, 

since both the flow of travelers and the population size in Wuhan were estimated daily. 

 ℙ�𝑋𝑋𝑡𝑡+Δ𝑡𝑡
(𝑖𝑖) − 𝑋𝑋𝑡𝑡

(𝑖𝑖) = 0� ≈ exp�−
 𝐼𝐼∗(𝑡𝑡)𝜅𝜅𝑖𝑖(𝑡𝑡)
𝑁𝑁(𝑡𝑡)

Δ𝑡𝑡 � (Equation 2) 

 ℙ�𝑇𝑇(𝑖𝑖) > 𝑡𝑡� = lim
Δ𝑡𝑡→0

�ℙ�𝑋𝑋𝑗𝑗Δ𝑡𝑡
(𝑖𝑖) − 𝑋𝑋(𝑗𝑗−1)Δ𝑡𝑡

(𝑖𝑖) = 0�
𝑀𝑀

𝑗𝑗=1

= exp�−�
𝐼𝐼∗(𝑠𝑠)𝜅𝜅𝑖𝑖(𝑠𝑠)
𝑁𝑁(𝑠𝑠)

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑠𝑠� (Equation 2) 

 
PDF𝑖𝑖(𝑡𝑡) =  

𝐼𝐼∗(𝑡𝑡)𝜅𝜅𝑖𝑖(𝑡𝑡)
𝑁𝑁(𝑡𝑡)

exp�−�
𝐼𝐼∗(𝑠𝑠)𝜅𝜅𝑖𝑖(𝑠𝑠)
𝑁𝑁(𝑠𝑠)

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑠𝑠� 

(Equation 3) 
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Sensitivity Analyses for the “First-Arrival” Model 

Under the ‘first-arrival’ model, it is assumed that all infected individuals since their 

arrival from Wuhan were eventually recorded/detected, i.e., 100% detection probability. 

However, it is possible that some first cases were missed by surveillance. Additionally, the 

model did not account for the possibility that detection efforts increased across provinces as the 

number of cases in Wuhan soared. Here, we perform sensitivity analyses to test the robustness of 

our estimation against these possibilities. 

The model formulation above needed a small modification to perform here sensitivity 

analyses. The event 𝑌𝑌: “no new arrival before time 𝑡𝑡 is later diagnosed with the infection” is now 

equivalent to “no arrival of an infected individual before time 𝑡𝑡,” “one infected arrival before 

time 𝑡𝑡 remained undiagnosed,” “two infected arrivals before time 𝑡𝑡 remained undiagnosed,” etc. 

For a Poisson process with fixed parameter 𝜆𝜆, the probability of 𝑌𝑌 can be expressed as: 

 ℙ(𝑌𝑌) = e−𝜆𝜆  + �
(1 − 𝑝𝑝)𝑘𝑘𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!

∞

𝑘𝑘=1

= 𝑒𝑒−𝜆𝜆𝜆𝜆 (Equation 4) 

where 𝑝𝑝 is the probability of detection. It follows that the modified PDF formulation for 

sensitivity analyses is: 

PDF𝑖𝑖(𝑡𝑡) =  
𝐼𝐼∗(𝑡𝑡)𝜅𝜅𝑖𝑖(𝑡𝑡) 𝑝𝑝

𝑁𝑁(𝑡𝑡)
exp�−�

𝐼𝐼∗(𝑠𝑠)𝜅𝜅𝑖𝑖(𝑠𝑠) 𝑝𝑝
𝑁𝑁(𝑠𝑠)

𝑡𝑡

𝑡𝑡0
𝑑𝑑𝑠𝑠� (Equation 5) 

This PDF was used instead of equation 4 to obtain maximum likelihood estimates of the 

growth rate and outbreak initiation date for sensitivity analyses. 

Results from Sensitivity Analyses 

We evaluated the sensitivity of the growth rate estimate to these detection scenario 

uncertainties. A total of 23 detection scenarios were considered. As an illustration, Appendix 2 

Figure 7 below describes two of these scenarios (purple and orange lines). 

As shown in Appendix 2 Figure 7, we considered a start date of detection. We also 

considered the possibility that this date was December 25 or 31, which corresponds to the date of 

arrival of the first detected case in other provinces. After the start date, either the detection 

changed to a constant over time (the blue line), or the detection rate increases over time (the 

orange line). The detection probabilities were either constant over time (purple line) or increased 
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from early to late January (orange line). In scenarios with increasing detection over time, we 

considered that probabilities linearly increased either from 5% to 35%, or from 10% to 70%. The 

7-fold increase was based on a recent paper from China CDC (4) showing that the case fatality 

ratio changes from 15% to 2% from early January to late January. This suggests a roughly 7-fold 

change in identifying infected individuals, assuming the true case fatality ratio shall be constant 

over time. Note that because this change reflects changes in Wuhan, rather than changes in non-

Hubei provinces (from which data was used for inference), we think this 7-fold change is a 

maximal change given the high surveillance intensity outside of Hubei. 

All considered scenarios along with their corresponding maximum likelihood estimate of 

the growth rate are reported in Appendix 1 Table 4. When the probability of detection was set to 

a constant level after the start date of detection (scenarios 1–12), the estimated growth rates are 

robust in the range of 0.28 to 0.29/day. t0 changed in a wide range between Dec 3 and 21, 2019. 

When the probability of detection of a case was set to 10%, the estimated growth rate remained 

0.29/day, but the estimated outbreak initiation date was Dec 12, 2019. When the probability of 

detection changes over time (scenarios 13–20), the estimated growth rates are in the range 

between 0.21–0.25/day. 

An additional analysis we did was to fixed t0 to December 1st and estimate detection 

levels (scenarios 21 to 23). Growth rate estimates in these cases are between 0.21 and 0.23/day, 

the detection level changed 2–3 folds. 

Overall, growth rate estimates varied from 0.21 to 0.3 across scenarios. An evaluation of 

the AIC suggests that models with constant levels of detection better fit the data. This cannot be 

attributed to model parsimony as the number of estimated parameters was the same across all 

scenarios (two parameters). This could indicate relatively constant awareness in non-Hubei 

provinces where no or very few cases had been detected. 

The “Case Count” Model: the SEIR-Type Hybrid Stochastic Model 

Model 1 fitted the time of arrival of the first confirmed case of each province. We used a 

different approach and a different dataset to infer disease dynamics. In particular, we constructed 

a hybrid stochastic model for inferring the disease dynamics in Wuhan using daily counts of 

individuals who contracted the infection in Wuhan and were diagnosed outside Hubei province. 
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The model is hybrid in the sense that we will couple a deterministic and exponential growth to 

describe the outbreak in Wuhan and an agent-based model which describes the discrete 

population dynamics of the patients after they left Hubei to other provinces. In Appendix 2 

Figure 8, we present a schematic diagram of the hybrid meta-population model. 

Deterministic and Exponential Dynamics in Wuhan 

We assume an exponential growth of the number of exposed (𝐸𝐸𝑊𝑊, 𝑊𝑊 for Wuhan) and 

symptomatic (𝐼𝐼𝑊𝑊) populations in Wuhan over time, 𝐸𝐸𝑊𝑊(𝑡𝑡) = 𝐸𝐸𝑊𝑊(0)𝑒𝑒𝑟𝑟𝑡𝑡 and 𝐼𝐼𝑊𝑊(𝑡𝑡) = 𝐼𝐼𝑊𝑊(0)𝑒𝑒𝑟𝑟𝑡𝑡 

from the onset. The overall growth rate 𝑟𝑟 is dominated by the largest eigenvalue of a sequential 

compound process, and given an 𝑟𝑟 value, the ratio 𝜙𝜙 ≔ 𝐸𝐸(0)/𝐼𝐼(0) is asymptotic constant (4). 

Thus, given a growth rate parameter 𝑟𝑟 and an initial condition 𝐸𝐸(𝑡𝑡0) + 𝐼𝐼(𝑡𝑡0) = 1, we 

numerically compute the exposed population 𝐸𝐸(𝑡𝑡) = 𝜙𝜙(𝑟𝑟) �1 + 𝜙𝜙(𝑟𝑟)�−1 exp�𝑟𝑟(𝑡𝑡 − 𝑡𝑡0)� and the 

symptomatic population 𝐼𝐼(𝑡𝑡) = �1 + 𝜙𝜙(𝑟𝑟)�−1 exp�𝑟𝑟(𝑡𝑡 − 𝑡𝑡0)�. 

Agent-Based Model for Patients Who Have Left Wuhan to Other Provinces 

We assume that between 1/1 and 1/26, the populations in Wuhan are large and the 

dynamics can be reasonably approximate by the above deterministic and exponentially growing 

curves. However, the initial propagation of the disease to other provinces in China involves only 

a small population of exposed (𝐸𝐸𝑂𝑂, 𝑂𝑂 for Others) or symptomatic individuals who left Hubei 

province. In addition, the transitions between different phases of these patients, from exposed 

(𝐸𝐸𝑂𝑂) to symptomatic (𝐼𝐼𝑂𝑂), over to hospitalized (𝐻𝐻𝑂𝑂), and finally to be confirmed by laboratory 

examinations (𝐶𝐶𝑂𝑂) in other provinces are also variable (as we quantified in Figure 1, panels C–F). 

Consequently, the resulting population dynamics in other provinces is highly stochastic. We thus 

adopt an agent-based modeling approach and rely on kinetic Monte Carlo Sampling techniques 

detailed below to simulate the population dynamics in other provinces. With this approach, we 

aim to generate samples of 1) each individual patient who left Wuhan at a specific date, and 2) 

the individual’s health status as the time progresses (susceptible, exposed, or symptomatic). The 

goal is to accumulate a large amount of Monte Carlo samples, by which we can compute the key 

summary statistics, i.e., the average case reported on each day between 1/18 and 1/26, to be 

compared against to the data. We achieve this by the following algorithmic procedures. 

1. Generate random number of infected populations leaving Wuhan. We collected 

migration index which quantifies the fraction of total populations (14 million) in Wuhan that 
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traveled to other provinces on each date 𝑡𝑡𝑖𝑖 = 1, … ,26 (see Appendix 1 Table 3). Assuming 

independence of an individual’s health state (susceptible, exposed, or symptomatic) and the 

individual’s migration decision (leaving to other provinces or not), on each date 𝑡𝑡𝑖𝑖, the exposed 

and symptomatic populations leaving Hubei can be modeled by two Binomial distributions, 

𝐵𝐵𝐸𝐸 = Binomial�𝐸𝐸𝑊𝑊(𝑡𝑡𝑖𝑖), 𝜇𝜇(𝑡𝑡𝑖𝑖)� and 𝐵𝐵𝐼𝐼 = Binomial�𝐼𝐼𝑊𝑊(𝑡𝑡𝑖𝑖), 𝜇𝜇(𝑡𝑡𝑖𝑖)�. Here, 𝐸𝐸𝑊𝑊(𝑡𝑡) and 𝐼𝐼𝑊𝑊(𝑡𝑡) are 

the exposed and symptomatic population in Wuhan, and are assigned to the nearest integers to 

the previously prescribed exponential growth, given model parameters (𝑟𝑟, 𝑡𝑡0). Thus, to generate 

one stochastic sample path (realization), we generate Binomially-distributed random populations 

leaving Hubei on each day between 1/1 and 1/26 (both included), and model each of these in 

silico patients’ health states by the following procedures. 

2. Generate the progression of the health state for each patient: We assume that each 

hypothetical patient generated by the above procedure would stochastically, identically and 

independently progress toward to be confirmed (𝐶𝐶𝑂𝑂) and reported in one of the other provinces. 

If an individual was exposed (𝐸𝐸𝑂𝑂) when s/he left Hubei at 𝑡𝑡𝑖𝑖, we generate a Gamma distributed 

random time Δ𝑡𝑡𝐸𝐸→𝐼𝐼 ∼ Γ(𝛼𝛼1,𝛽𝛽1) and update the individual’s health state to symptomatic (𝐼𝐼𝑂𝑂) at 

time 𝑡𝑡𝑖𝑖 + Δ𝑡𝑡𝐸𝐸→𝐼𝐼 . We chose a time-dependent waiting-time distribution for the progression from 

symptomatic sate 𝐼𝐼𝑂𝑂 to reflect the two regimes we observed from the data (see main text): If 𝑡𝑡𝑖𝑖 +

Δ𝑡𝑡𝐸𝐸→𝐼𝐼 is before 1/18 (included), we generate a Gamma distributed random time Δ𝑡𝑡𝐼𝐼→𝐻𝐻 ∼

Γ�𝛼𝛼2,1,𝛽𝛽2,1� to model the waiting time for an infected patient to be hospitalized (otherwise, if it 

is later than 1/18, Δ𝑡𝑡𝐼𝐼→𝐻𝐻 ∼ Γ�𝛼𝛼2,2,𝛽𝛽2,2�). Consequently, the patient’s state is changed to 𝐻𝐻𝑂𝑂 at 

time 𝑡𝑡𝑖𝑖 + Δ𝑡𝑡𝐸𝐸→𝐼𝐼 + Δ𝑡𝑡𝐼𝐼→𝐻𝐻. If 𝑡𝑡𝑖𝑖 + Δ𝑡𝑡𝐸𝐸→𝐼𝐼 + Δ𝑡𝑡𝐼𝐼→𝐻𝐻 is before 1/19, the patient would wait in the 

“H” state until 1/19 when the policy of case confirmation was announced and institutionalized. 

Then, the confirmation process is modeled by another Gamma distributed random time Δ𝑡𝑡𝐻𝐻→𝐶𝐶 ∼

Γ(𝛼𝛼3,𝛽𝛽3). The patient is then confirmed and reported at time 𝑡𝑡𝑖𝑖 + Δ𝑡𝑡𝐸𝐸→𝐼𝐼 + Δ𝑡𝑡𝐼𝐼→𝐻𝐻 + Δt𝐻𝐻→𝐶𝐶, and 

we add one more case report at the next integer (date of January). Similar procedure applied to a 

patient who had already progressed to the 𝐼𝐼𝑊𝑊 state before s/he left Hubei on date 𝑡𝑡𝑖𝑖, with the 

exception that the first random waiting time is neglected—the patient’s confirmation time would 

be 𝑡𝑡𝑖𝑖 + Δ𝑡𝑡𝐼𝐼→𝐻𝐻 + Δ𝐻𝐻→𝐶𝐶. We repeat the procedure for each in-silico patient who left Wuhan 

between 1/1 and 1/26 (both included), and register the time when these patients were reported 

between 1/18 and 1/26 (both included). 
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Parameter Estimation and Uncertainty Quantification of (𝒓𝒓, 𝒕𝒕𝟎𝟎) 

It is our task to infer the unknown parameters, exponential growth rate 𝑟𝑟 and exponential 

growth onset time 𝑡𝑡0 by the number of confirmed cases reported between 1/18 and 1/26. This is 

possible because the information of the unknown parameters (𝑟𝑟, 𝑡𝑡0) have an impact of the 

deterministic growths of the exposed 𝐸𝐸𝑊𝑊(𝑡𝑡) and symptomatic population 𝐼𝐼𝑊𝑊(𝑡𝑡), which in turn 

have an impact on the random populations which have left Hubei on each date. These 

populations follow statistically quantified processes until the final confirmation outside of Hubei, 

and can be compared against the reported data. 

An error measure is devised to assess the quality of fit of the model given a set of 

parameters (𝑟𝑟, 𝑡𝑡0) by the following procedures. For each parameter set, we generate 213 = 8192 

Monte Carlo samples. On each date 𝑡𝑡𝑖𝑖, the 𝑗𝑗th sample reports a random number 𝑛𝑛𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡_𝑖𝑖|𝑟𝑟, 𝑡𝑡0, 𝑗𝑗) 

of confirmed new cases. We thus average over all the samples and obtain an averaged number of 

newly confirmed cases on a date 𝑡𝑡𝑖𝑖, 𝑛𝑛𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡𝑖𝑖|𝑟𝑟, 𝑡𝑡0) ≔ ∑ 𝑛𝑛𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡𝑖𝑖|𝑟𝑟, 𝑡𝑡0, 𝑗𝑗)8192
𝑗𝑗=1 , and compare it to the 

actual data 𝑛𝑛𝐶𝐶𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷(𝑡𝑡𝑖𝑖). We quantify the quality of the fit by computing the sum of the squared 

residuals: 

A 100 × 100 grid-based parameter scan is performed to identify the parameters in the 

region 0.22 < 𝑟𝑟 < 0.42 and −20 ≤ 𝑡𝑡0 ≤ −5 for identifying the best-fit parameters: 

 

As for uncertainty quantification, we formulate the logarithm of the likelihood ℒ of a 

parameter set (𝑟𝑟, 𝑡𝑡0) as 

Here, 𝑛𝑛 = 9 is the number of data points we use to fit the model. The assumption we 

make to formulate the above likelihood is that 1) the data (number reported new cases on date 𝑡𝑡𝑖𝑖) 

is normally distributed with a mean which equals to the Monte Carlo mean reported new cases in 

 𝜀𝜀2(𝑟𝑟, 𝑡𝑡0) ≔ � �𝑛𝑛𝐶𝐶𝑀𝑀𝐶𝐶(𝑡𝑡𝑖𝑖|𝑟𝑟, 𝑡𝑡0) −  𝑛𝑛𝐶𝐶𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷(𝑡𝑡𝑖𝑖)�
2

26

𝑡𝑡𝑖𝑖=18

 (Equation 6) 

 𝑟𝑟∗, 𝑡𝑡0∗ ≔ argmin{𝑟𝑟,𝑡𝑡0}𝜀𝜀2(𝑟𝑟, 𝑡𝑡0) (Equation 7) 

 logℒ(𝛼𝛼, 𝜏𝜏) ≔ −𝑛𝑛
𝜀𝜀2(𝑟𝑟, 𝑡𝑡0)
𝜀𝜀2(𝑟𝑟∗, 𝑡𝑡0∗) (Equation 8) 
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our model, and 2) the variance of the noise is identically and 𝑡𝑡𝑖𝑖-independently distributed, and 

the variance is equal to the mean squared residuals of the best-fit model. 

We can then formulate a likelihood ratio test, which quantifies how likely a set of 

parameters (𝑟𝑟, 𝑡𝑡0) is in comparison to the best-fit parameters (𝑟𝑟∗, 𝑡𝑡0∗): 

 

In Bayesian inference, what we computed is essentially the joint posterior distribution of 

the model parameters (𝑟𝑟, 𝑡𝑡0), provided a uniform prior distribution on the region of our interests. 

We present this joint distribution in Appendix 2 Figure 5. Finally, because the joint posterior is 

narrowly distributed, we can numerically compute the marginalized posterior, 

which is reported in Figure 4 and used to calculate the bounds of centered 95% probability mass 

to estimate the confidence interval of the growth rate 𝑟𝑟. 

Calculation of R0 from Estimated Exponential Growth Rates 

Assuming gamma distributions for the latent and infectious periods, Wearing et al. (5) 

have shown that the value of R0 can be calculated from estimated exponential growth rate, r, of 

an outbreak as: 

where 1/𝜎𝜎 and 1/𝛾𝛾 are the mean latent and infectious periods, respectively, and 𝑚𝑚 and 𝑛𝑛 are the 

shape parameters for the gamma distributions for the mean latent and infectious periods, 

respectively. 

 ℙ{𝑟𝑟, 𝑡𝑡0 | 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷} ∼ exp �−𝑛𝑛 �1 −
𝜀𝜀2(𝑟𝑟, 𝑡𝑡0)
𝜀𝜀2(𝑟𝑟∗, 𝑡𝑡0∗)�� (Equation 9) 

 

ℙ{𝑟𝑟 | 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷} ∼ �ℙ{𝑟𝑟, 𝑡𝑡0 | 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷} d𝑡𝑡0 

ℙ{𝑡𝑡0 | 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷} ∼ �ℙ{𝑟𝑟, 𝑡𝑡0 | 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷} d𝑟𝑟 

(Equation 10) 

 𝑅𝑅0 =
𝑟𝑟 � 𝑟𝑟
𝜎𝜎𝑚𝑚 + 1�

𝑚𝑚

𝛾𝛾 �1 − � 𝑟𝑟𝛾𝛾𝑛𝑛 + 1�
−𝑛𝑛
�
 (Equation 12) 
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To quantify the uncertainty of 𝑅𝑅0, we assumed that m = 4.5 (same as the shape parameter 

we estimated for the incubation period), n = 3. The parameters (𝑟𝑟,𝜎𝜎, 𝛾𝛾) are assumed to be 

mutually independent and we generate random samples according to ranges of variations defined 

in Appendix 1 Table 5 to compute the resulting 𝑅𝑅0. We generated 104 parameters, accepted 

those that result in a serial interval within the range of interests, and then computed their 

respective 𝑅𝑅0 using Equation 12. We used the 97.5% and 2.5% percentile of the generate data to 

quantify the 95% confidence interval. 

Calculation of the Impact of Intervention Strategies 

Using a susceptible–exposed (noninfectious)– infectious–recovered (SEIR) type 

compartmental model, Lipsitch et al. (6) evaluated the impact of quarantine of symptomatic 

cases and their contacts to prevent further transmission. Assuming that only symptomatic 

individuals transmit the pathogen, they showed that the reproductive number after the 

intervention, 𝑅𝑅𝑖𝑖𝑛𝑛𝑡𝑡, can be expressed as: 

 

where 𝑅𝑅 is the reproductive number before intervention, 𝑞𝑞 is the percentage of infected 

individuals being quarantined, 𝐷𝐷𝑖𝑖𝑛𝑛𝑡𝑡 and 𝐷𝐷 are the mean durations of infectious period after 

intervention and without intervention, respectively. 

Here in our model, we adopted this formulation; however, we assumed that a fraction, 𝑓𝑓, 

of infected individuals are asymptomatic and can transmit. In this case, quarantine of 

symptomatic individuals only reduces the contribution of these individuals toward the 

reproductive number. Thus, we can calculate the reproductive number under quarantine, 𝑅𝑅𝑞𝑞, as: 

We also considered another form of control measure, i.e., the population-level control 

measure that reduces overall number of daily contacts in the population by 𝜀𝜀. These measures 

include closing down of transportation systems, work and/or school closure, etc. Since R depends 

 𝑅𝑅𝑖𝑖𝑛𝑛𝑡𝑡 =
𝑅𝑅(1 − 𝑞𝑞)𝐷𝐷𝑖𝑖𝑛𝑛𝑡𝑡

𝐷𝐷
 (Equation 11) 

 𝑅𝑅𝑞𝑞 = 𝑓𝑓𝑅𝑅 + (1 − 𝑓𝑓)𝑅𝑅𝑖𝑖𝑛𝑛𝑡𝑡 = 𝑅𝑅 �𝑓𝑓 + (1 − 𝑓𝑓)(1 − 𝑞𝑞)
𝐷𝐷𝑖𝑖𝑛𝑛𝑡𝑡
𝐷𝐷
� (Equation 12) 
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linearly on the number of daily contacts, we calculate the combined impact of the individual-

based quarantine and the population level control measure as: 

In our calculations, we assume that the mean duration of infectious period of COVID-19 

to be 10 days, i.e. 𝐷𝐷 = 10 days. We further assume that intervention can reduce infectious period 

to 4 days, i.e., 𝐷𝐷𝑖𝑖𝑛𝑛𝑡𝑡 = 4 days, based on data on the time from symptom onset to hospitalization 

from Singapore (7) and that individuals may transmit the virus before symptom onset. Since 

Singapore has one of the best surveillance systems for emerging infectious diseases like COVID-

19, the value of 𝐷𝐷𝑖𝑖𝑛𝑛𝑡𝑡 used here shall represent the best scenario for case isolation intervention. 

We set the value of 𝑅𝑅 to be the median estimate of 𝑅𝑅0, i.e., 𝑅𝑅0 = 5.7. 
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Appendix 2 Figure 1. The duration from symptom onset to hospitalization (y-axis) decreases over time 

during the outbreak. 
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Appendix 2 Figure 2. Predictions of the ‘first arrival’ model using best-fit parameters agree well with 

data. Probability densities of times of first arrival of infected cases in each province based on our 

maximum likelihood estimate (curves) and documented times of first arrival of infected individuals in our 

case report dataset (lines). 
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Appendix 2 Figure 3. Projections of numbers of infected individuals in Wuhan between January 1 and 

30, 2020 using the likelihood profile of parameter values in the ‘first arrival’ approach. Projections after the 

lock-down of Wuhan on January 23 were hypothetical scenarios assuming no control measures are 

implemented. 

 

 

Appendix 2 Figure 4. Log-likelihood profiles of the estimated exponential growth rate of the outbreak, r 

(x-axis) and the date of exponential growth initiation (y-axis) from the ‘first arrival’ model (A) and the ‘case 

count’ model (B). 
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Appendix 2 Figure 5. The growth rate of the number of daily new death cases (on a log scale) in Hubei 

province in late January 2020 is estimated to be 0.27/day for cases collected between Jan. Twenty-two 

and 29, 2020. Dots and the blue line denote data and a fitted regression line, respectively. Note, there is 

a decrease in the growth rate after Jan 29, possibly reflecting intervention efforts or overwhelmed hospital 

system. When we include the data points on Jan. Thirty and 31, we get a growth rate of 0.22/day. We 

think the estimation using early data points are a better reflection of the early infection dynamics; 

however, we report a growth rate of the new death counts to be between 0.22 and 0.27/day. 
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Appendix 2 Figure 6. Heatmap showing how R0 changes with the mean durations of latent period and 

infectious period. The mean latent period is varied between 2.2 days and 6 days. The lower bound 

include the possibility that infected individual becomes infectious 2–3 days before symptom onset. The 

mean infectious period is varied between 4–14 days. The outbreak growth rate, r, is set to 0.29/day. Solid 

and dashed lines denote serial interval of 6, 7, 8 and 9 days, where we assumed the serial interval is the 

sum of the latent period and the half of the infectious period. 
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Appendix 2 Figure 7. Illustration of two detection scenarios (blue and orange lines) considered in 

sensitivity analysis. In both illustrated scenarios, it was considered impossible that a case who had 

arrived from Wuhan before Dec. 25, 2019 could be later detected with coronavirus (red dashed line), i.e., 

0% detection before Dec 25. In the blue scenario, the detection probability changes from 0 to 50% after 

Dec 25; whereas the detection probability changes from 0 to 10% after Dec 25 and increases from 10% 

to 70% linearly between Jan. One and 15, 2020. 
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Appendix 2 Figure 8. Schematic diagram of the proposed meta-population model. Schematic diagram of 

the hybrid stochastic model. The model is a variant of the SEIR model with two geographic compartment, 

Wuhan (subscripted 𝑊𝑊) and other provinces (subscripted 𝑂𝑂). In Wuhan, a susceptible patient in 

compartment 𝑆𝑆𝑊𝑊 is first exposed and progresses to an exposed state (𝐸𝐸𝑊𝑊), progressed to be infected 

(𝐼𝐼𝑊𝑊), hospitalized (𝐻𝐻𝑊𝑊), and then became a confirmed case (𝐶𝐶𝑊𝑊), and either recovered (𝑅𝑅𝑊𝑊) or deceased 

(𝐷𝐷𝑊𝑊). A portion of ill population (𝐸𝐸𝑊𝑊 and 𝐼𝐼𝑊𝑊) moved to other provinces and followed a similar progression. 

Because these populations are small and thus the dynamics are stochastic, we adopt an agent based 

approach to simulate the disease dynamics (𝐸𝐸𝑂𝑂(𝑡𝑡), 𝐼𝐼𝑂𝑂(𝑡𝑡), 𝐻𝐻𝑂𝑂(𝑡𝑡) and 𝐶𝐶𝑂𝑂(𝑡𝑡)) in other provinces. The case 

reports on each day in other provinces were compared against the model’s output, 𝐶𝐶𝑂𝑂(𝑡𝑡) to constrain the 

unknown initial onset and growth rate in Wuhan. 
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