
A novel coronavirus, later named severe acute 
respiratory syndrome coronavirus 2 (SARS-

CoV-2), was identified in December 2019 in the city 
of Wuhan, capital of Hubei Province, China, where 
cases were first confirmed (1). During December 
2019–February 2020, the number of confirmed cases 
increased drastically. Model estimates suggested 
that >75,000 persons were infected by January 25, 
2020, and the epidemic had a doubling time of ≈6 
days (2). By the end of January 2020, travel restric-
tions were implemented for Wuhan and neighbor-
ing cities. Nonetheless, the virus spread from Wu-
han to other cities in China and outside the country. 
By February 4, 2020, a total of 23 locations outside 
mainland China reported cases, 22 of which report-
ed imported cases; Spain reported a case caused by 
secondary transmission (3).

Most cases imported to other locations have been 
linked to recent travel history from China (3), suggest-
ing that air travel plays a major role in exportation of 
cases to locations outside of China. To prevent other 
cities and countries from becoming epicenters of the 
SARS-CoV-2 epidemic, substantial targeted public 
health interventions are required to detect cases and 
control local spread of the virus. We collected estimates 
of air travel volume from Wuhan to the 27 most con-
nected locations outside of China from a total of 194 
international destinations. We then identified 49 loca-
tions with high surveillance capacity according to the 
Global Health Security (GHS) Index (4). We assumed 
these locations would have relatively high proficiency 
in detecting SARS-CoV-2 and reporting confirmed im-
ported cases, which we refer to as imported-and-re-
ported cases. We fitted a generalized linear regression 
model on this subset of locations; based on this model 
fit, we generated predictions for all international loca-
tions. Using these predictions, we identified locations 
that might not be detecting imported cases.

Methods
To identify locations reporting fewer than predicted 
imported SARS-CoV-2 infected cases, we fit a model 
to data from 49 locations outside mainland China 
that had a score of >49.2/100 (the 75th quantile) of 
the GHS Index’s category 2 (Early Detection and Re-
porting of Epidemics of Potential International Con-
cern) (4). Among these, 17 had high travel connectiv-
ity to Wuhan and 32 had low connectivity to Wuhan 
(S. Lai et al., unpub. data, https://doi.org/10.1101/
2020.02.04.20020479). We considered locations to be 
countries without taking any position on territorial 
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Cases of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) infection exported from mainland 
China could lead to self-sustained outbreaks in other 
countries. By February 2020, several countries were 
reporting imported SARS-CoV-2 cases. To contain the 
virus, early detection of imported SARS-CoV-2 cases is 
critical. We used air travel volume estimates from Wu-
han, China, to international destinations and a gener-
alized linear regression model to identify locations that 
could have undetected imported cases. Our model can 
be adjusted to account for exportation of cases from 
other locations as the virus spreads and more informa-
tion on importations and transmission becomes avail-
able. Early detection and appropriate control measures 
can reduce the risk for transmission in all locations.
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claims. We performed a Poisson regression by using 
the cumulative number of imported-and-reported 
SARS-CoV-2 cases in these 49 countries and the es-
timated number of daily airline passengers from 
the Wuhan airport. We then compared predictions  
from this model with imported-and-reported cases 
across 194 locations from the GHS Index, excluding 
China as the epicenter of the outbreak.

The model requires data on imported-and-re-
ported cases of SARS-CoV-2 infection, daily air travel 
volume, and surveillance capacity. We obtained data 
on imported-and-reported cases aggregated by desti-
nation from the World Health Organization technical 
report issued February 4, 2020 (3). We assumed a case 
count of 0 for locations not listed. We used February 
4 as the cutoff for cumulative imported-and-report-
ed case counts because exported cases from Hubei 
Province dropped rapidly after this date (3), likely  
because of travel restrictions for the province were 
implemented on January 23. We defined imported-
and-reported cases as those with known travel history 
from China; of those, 83% had a travel history from 
Hubei Province and 17% traveled from unknown lo-
cations in China (3). We excluded reported cases like-
ly caused by transmission outside of China or cases in 
which the transmission source was still under investi-
gation (3). In addition, we excluded Hong Kong, Ma-
cau, and Taiwan from our model because locally trans-
mitted and imported cases were not disaggregated in  
these locations. 

We obtained data on daily air travel from a net-
work-based modeling study (S. Lai et al., unpub. data, 
https://doi.org/10.1101/2020.02.04.20020479) that re-
ported monthly air travel volume estimates for the 27 
locations outside mainland China that are most con-
nected to Wuhan. These estimates were calculated from 
International Air Travel Association data from February 
2018, which includes direct and indirect flight itinerar-
ies from Wuhan. For these 27 locations, estimated air 
travel volumes are >6 passengers/day. We assumed 
that travel volumes for locations not among the most 
connected are censored by a detection limit. We used 
a common method of dealing with censored data from 
environmental sampling (5), or metabolomics (6), and 
set the daily air travel volume to half the minimum val-
ue. Therefore, we used 3 passengers/day for estimated 
travel volumes for the 167 locations from the GHS Index 
not listed by Lai et al. We tested the robustness of our 
results by using a set of alternative values of 0.1, 1, and 6 
passengers/day for the censored data. 

As noted, we defined high surveillance locations 
as those with a GHS Index for category 2 above the 
75th quantile (4). We assessed among the high and 

low surveillance locations the numbers of zero and of 
nonzero imported-and-reported case counts (Table).

For our model, we assumed that the cumulative 
imported-and-reported case counts across 49 high 
surveillance locations follow a Poisson distribution 
from the beginning of the epidemic until February 
4, 2020. Then the expected case count is linearly pro-
portional to the daily air travel volume in the follow-
ing formula:

where i denotes location, Ci denotes the imported-and-
reported case count in a location, λi denotes the expect-
ed case count in a location, β denotes the regression 
coefficient, and xi denotes the daily air travel volume 
from Wuhan to a location. The Poisson model assumes 
cases are independent and that the variance is equal to 
the expected case count. Imported-and-reported cases 
likely meet the independence assumption because the 
value excludes cases with local transmission. We also 
checked the robustness of our results by using an over 
dispersed model with a negative binomial likelihood. 
We computed the p value of the overdispersion pa-
rameter as shown in Gelman and Hill (7).

We used R version 3.6.1 (https://www.r-project.
org) to compute , the maximum likelihood estimate of 
β, and the expected imported-and-reported case count 
given high surveillance (Figure 1). We also computed 
the 95% prediction interval (PI) bounds under this 
model of high surveillance for all 194 locations of daily 
air travel volume (Figure 1). First, we generated a boot-
strapped dataset by sampling n locations with replace-
ment among high surveillance locations. Then, we re-
estimated β by using the bootstrapped dataset. Finally, 
we simulated imported-and-reported case counts for 
all 194 locations under our model by using the estimate 
of β from the bootstrapped dataset. We repeated the 3 
steps 50,000 times to generate 50,000 simulated import-
ed-and-reported case counts for each of the locations 
and computed to the lower and upper PI bounds (PI 
2.5%–97.5%). We smoothed the 95% PI bounds by us-
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Table. Surveillance capacity of locations with and without 
imported-and-reported cases of severe acute respiratory 
syndrome coronavirus 2, 2020* 

Surveillance capacity 
No. locations 

Total 0 cases >1 case 
High 35 14 49 
Low 138 7 145 
Total 173 21 194 
*Aggregated case counts collected during January 20–February 4, 2020. 
Surveillance capacity reported by category 2, Early Detection and 
Reporting of Epidemics of Potential International Concern, of the Global 
Health Security (GHS) Index (3). High surveillance capacity is defined as a 
GHS Index above the 75th quantile; low surveillance capacity is defined as 
a GHS Index below the 75th quantile. 
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ing ggplot2 in R (8). We fit the imported-and-reported 
case counts of the 49 high surveillance locations to the 
model and plotted these alongside 145 locations with 
low surveillance capacity (Figure 1). We noted some 
overlap between high and low surveillance locations 
(Figure 1).

To assess the robustness of our results we ran 8 ad-
ditional regression analyses by implementing a series 
of changes to the analysis. These changes included the 
following: setting the daily air travel volume to 0.1, 1, 
or 6 passengers/day for locations not listed by Lai et 
al. (unpub. data, https://doi.org/10.1101/2020.02.04.2
0020479) (Figure 2, panels A–C); removing all locations 
not listed by Lai et al. before fitting (Figure 2, panel D); 
defining high surveillance locations by using a more 
lenient GHS Index criterion, 50th quantile (Figure 2, 
panel E), and a more stringent criterion, 95th quantile 
(Figure 2, panel F); excluding Thailand from the model 
because it is a high-leverage point (Figure 2, panel G); 
and using an overdispersed Poisson likelihood (i.e., a 
negative-binomial likelihood) (Figure 2, panel H). We 
provide code for these analyses on GitHub (https://
github.com/c2-d2/cov19flightimport).

Results
We found that daily air travel volume positively 
correlates with imported-and-reported case counts 
of SARS-CoV-2 infection among high surveillance 

locations (Figure 1). We noted that increasing flight 
volume by 31 passengers/day is associated with 1 
additional expected imported-and-reported case. In 
addition, Singapore and India lie above the 95% PI 
in our model; Singapore had 12 more imported-and-
reported cases (95% PI 6–17 cases) than expected and 
India had 3 (95% PI 1–3 cases) more than expected. 
Thailand has a relatively high air travel volume com-
pared with other locations, but it lies below the 95% 
PI, reporting 16 (95% PI 1–40 cases) fewer imported-
and-reported cases than expected under the model. 
Indonesia lies below the PI and has no imported-and-
reported cases, but the expected case count is 5 (95% 
PI 1–10 cases) in our model. Across all 8 robustness 
regression analyses, we consistently observed that 
Singapore lies above the 95% PI and Thailand and 
Indonesia lie below (Figure 2). India remains above 
the 95% PI in all robustness analyses except when we 
used the more stringent GHS Index, 95th quantile, for 
fitting; then India lies on the upper bound of the 95% 
PI (Figure 2, panel F).

Discussion
We aimed to identify locations with likely undetected 
or underdetected imported cases of SARS-CoV-2 by 
fitting a model to the case counts in locations with 
high surveillance capacity and Wuhan-to-location air 
travel volumes. Our model can be adjusted to account 
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Figure 1. Plot showing imported-
and-reported cases of severe 
acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) 
against air travel volume (no. 
persons/day) from Wuhan, China. 
No. cases refers to possible 
imported-and-reported SARS-
CoV-2 cases. Solid line indicates 
the expected imported-and-
reported case counts for locations 
based on the model fit to high 
surveillance locations (slope = 3.3 
cases/100 passengers; p<0.001). 
Dashed lines represent for the 
same model the smoothed 95% 
prediction interval bounds. Purple 
dots indicate locations with high 
surveillance capacity according 
to category 2 of the Global Health 
Security Index. Cluster A is 
composed of Nepal, Sri Lanka, 
Finland, and Sweden, locations 
with 1 imported-and-reported 
case and air travel volume of <20 
passengers per day. Cluster B is 
composed of 161 locations with no 
imported-and-reported cases and estimated air travel <10 passengers per day. GER, Germany; NZ, New Zealand; RUS, Russia; UAE, 
United Arab Emirates; UK, United Kingdom; USA, United States of America.
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for exportation of cases from locations other than Wu-
han as the outbreak develops and more information 
on importations and self-sustained transmission be-
comes available. One key advantage of this model 
is that it does not rely on estimates of incidence or 
prevalence in the epicenter of the outbreak. Also, we 
intentionally used a simple generalized linear model. 
The linearity of the expected case count means that 
we have only 1 regression coefficient in the model 
and no extra parameters. The Poisson likelihood then 
captures the many 0-counts observed for less highly 
connected locations but also describes the slope be-
tween case-count and flight data among more con-
nected locations. We believe this model provides the 
most parsimonious phenomenologic description of 
the data.

According to our model, locations above the 95% 
PI of imported-and-reported cases could have high-
er case-detection capacity. Locations below the 95% 
PI might have undetected cases because of expect-
ed imported-and-reported case counts under high  

surveillance. Underdetection of cases could increase 
the international spread of the outbreak because the 
transmission chain could be lost, reducing oppor-
tunities to deploy case-based control strategies. We 
recommend rapid strengthening of outbreak surveil-
lance and control efforts in locations below the 95% 
PI lower bound, particularly Indonesia, to curb po-
tential local transmission. Early detection of cases 
and implantation of appropriate control measures 
can reduce the risk for self-sustained transmission in  
all locations.
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Figure 2. Analyses of imported-and-reported cases and daily air travel volume using a model to predict locations with potentially 
undetected cases of severe acute respiratory virus 2 (SARS-CoV-2). Air travel volume measured in number of persons/day. No. cases 
refers to possible undetected imported SARS-CoV-2 cases. Solid line shows the expected imported-and-reported case counts based 
on our model fitted to high surveillance locations, indicated by purple dots. Dashed lines indicate the 95% prediction interval bounds 
smoothed for all locations, including those with low surveillance capacity, indicated by light blue dots. A–C) Regressions that set the 
daily air travel volume for locations not listed by S. Lai et al. (unpub. data, https://doi.org/10.1101/2020.02.04.20020479): A) air travel 
volume set to 0.1 passenger/day; B) volume set to 1 pas   sengers/day; C) volume set to 6 passengers/day. D) Regression removing 
locations not listed by Lai et al. before fitting. E) Regression defining high surveillance locations by using a more lenient Global Health 
Security (GHS) Index criterion (50th quantile) for category 2, Early Detection and Reporting of Epidemics of Potential International 
Concern, to define high surveillance locations. F) A more stringent GHS Index criterion (95th quantile) to define high surveillance 
locations. G) Regression using a negative binomial likelihood and estimated dispersion parameter of 1.27 (p = 0.097). H) Regression 
excluding Thailand from the model fit.  Across all 8 regression analyses, Singapore lies above the 95% PI and Thailand and Indonesia 
lie below. India remained above 95% PI for all regressions, except when we used a more stringent GHS Index criterion (panel F). IDN, 
Indonesia; IND, India; SGP, Singapore; THA, Thailand.
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