
Artemisinin-based combination therapy (ACT) 
has been first-line treatment for uncomplicated 

Plasmodium falciparum malaria globally for the past 
10–15 years and has contributed greatly to a reduc-
tion of malaria illnesses and deaths during 2005–2015 
(1,2). However, artemisinin resistance emerged in 
Cambodia during 2008, where it then spread and 
even developed de novo throughout the Great  

Mekong Region (3,4). Possible resistance has been re-
ported from eastern India (5) and, Guyana in South 
America (6) but not yet from Africa (4). However, 
ACT resistance represents a continuous threat in 
contexts such as Zanzibar, where numerous long-
distance visitors represent a special risk for imported 
artemisinin-resistant malaria parasites. Chloroquine 
resistance entered eastern Africa most probably from 
India in late 1970s (7). In addition, selection of resis-
tance/tolerance to the slowly eliminated long-acting 
partner drugs in ACT (e.g., amodiaquine) is expected, 
especially in highly malaria-endemic areas of Africa 
(8–10), which could result in relatively reduced ACT 
cure rates and reduced protection against artemisinin 
resistance (11). Currently, however, complete ACT 
resistance has developed and spread only in Asia 
(e.g., Cambodia) (12).

In Zanzibar, malaria transmission has been re-
duced substantially after new and reinforced malaria 
tools and interventions, including ACT for uncom-
plicated malaria (2), were implemented. The reduced 
parasite biomass on the islands of Zanzibar has re-
sulted in an expected selection (bottleneck) of the 
parasite populations (2,13), which under strong drug 
exposure might select for drug resistance. The first-
line ACT in Zanzibar has been artesunate/amodia-
quine (ASAQ) since 2003, plus recently added single, 
low-dose primaquine. Artemether/lumefantrine was 
used as second-line treatment when ACT was first 
used, followed by quinine when treatment guidelines 
were revised in 2009 (2). Free access throughout the 
health systems has resulted in sustained high popula-
tion coverage and compliance to ASAQ (2,14,15). The 
partner drug amodiaquine is relatively short-lived 
(half-life 2–8 hours) and is primarily metabolized to 
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Artemisinin-based combination therapies (ACTs) are 
first-line treatments for uncomplicated Plasmodium falci-
parum malaria. ACT resistance is spreading in Asia but 
not yet in Africa. Reduced effects of ACT partner drugs 
have been reported but with little information regarding 
widely used artesunate/amodiaquine (ASAQ). We stud-
ied its efficacy in Zanzibar after 14 years as first-line 
treatment directly by an in vivo, single-armed trial and 
indirectly by prevalences of different genotypes in the P. 
falciparum chloroquine-resistance transporter, multidrug-
resistance 1, and Kelch 13 propeller domain genes. In 
vivo efficacy was higher during 2017 (100%; 95% CI 
97.4%–100%) than during 2002–2005 (94.7%; 95% CI 
91.9%–96.7%) (p = 0.003). Molecular findings showed 
no artemisinin resistance–associated genotypes and 
major increases in genotypes associated with high sen-
sitivity/efficacy for amodiaquine than before ASAQ was 
introduced. Thus, the efficacy of ASAQ is maintained and 
appears to be increased after long-term use in contrast to 
what is observed for other ACTs used in Africa.
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its main biologically active metabolite desethyl-amo-
diaquine, which has a longer terminal elimination 
half-life (>7 days) (16).

Efficacy verses resistance to ACTs is primarily 
assessed by the in vivo response to standard treat-
ment in which early clearance determines the effect 
of the artemisinin component, and the cure rate by 
days 28 or 42 after treatment determines the effect 
of the combination, especially that of the partner 
drug (17). Tolerance/resistance to the ACT compo-
nents can also be estimated separately by genetic 
determination of different drug-resistance associ-
ated polymorphisms. A few longitudinal studies in 

Africa have examined tolerance/resistance trends 
to ACTs, especially to artemether/lumefantrine, 
suggesting largely maintained treatment efficacy 
but also higher prevalences of genotypes associ-
ated with tolerance to lumefantrine (18,19). How-
ever, there is a lack of combining longitudinal in 
vivo cure rates and molecular findings, particularly 
in relation to ASAQ, the second most widely used 
ACT in Africa.

In Zanzibar, 2 previous clinical trials in 2002–2003 
(20) and 2005 (A. Bjorkman, unpub. data) showed 
high efficacy of ASAQ. A study of gene polymor-
phisms did not show any early trends of drug  
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Figure 1. Locations of 14 study health centers, including 11 peripheral satellite health units and 3 referral health facilities for which 
increased sensitivity of Plasmodium falciparum to artesunate/amodiaquine despite 14 years as first-line malaria treatment was tested, 
Zanzibar. A) Unguja Island; B) Pemba Island.
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resistance selection after wide-scale ACT implemen-
tation (21). We conducted a new clinical trial and 
molecular survey of P. falciparum genes in 2017, after 
14 years of large-scale use of ASAQ as first-line treat-
ment. The objective of this study was to estimate the 
P. falciparum sensitivity to ASAQ, including both the 
in vivo treatment efficacy and the parasite profiles 
with regards to drug resistance–associated molecular 
characteristics (markers). The in vivo and molecular 
results were then compared with findings from previ-
ous studies conducted during 2002–2013.

Materials and Methods

Study Design and Area
We conducted a single-armed therapeutic efficacy 
trial of ASAQ (standard dose) and primaquine (sin-
gle low-dose) treatment for uncomplicated P. falci-
parum malaria (ClinicalTrials.gov identification no. 
NCT03773536), in accordance with World Health Or-
ganization (22) and Worldwide Antimalarial Resis-
tance Network guidelines (23), in the West and Cen-
tral Districts (Unguja Island) and Micheweni District 
(Pemba Island) during May–September 2017. Study 
participants were recruited from 14 primary health-
care units, including 11 peripheral satellite facilities 
and 3 referral health facilities (Figure 1). We selected 
the facilities on the basis of relatively high malaria 
detection rates in 3 preceding months and proximity 
to 3 centrally located referral centers in the respec-
tive districts. The study was implemented in accor-
dance with the Helsinki Declaration and approved 
by the Zanzibar Medical Research Ethical Committee,  

Zanzibar Food and Drug Board, and Regional Re-
search Ethics Board in Stockholm, Sweden.

Study Participants
The participants (all ages) were recruited among 
febrile patients attending the 14 selected health fa-
cilities. They were screened by using malaria rapid 
diagnostic tests (mRDTs), and if positive results 
were found, they were referred to the closest refer-
ral center. Participants were considered eligible for 
study inclusion if they were confirmed to be febrile 
(axillary temperature >37.5°C) or had a history of 
fever (past 48 hours) and confirmed microscopi-
cally with any level of asexual P. falciparum para-
sitemia. They were finally enrolled if considered 
able to comply with the study protocol (e.g., resi-
dence <10 km from referral center) and if written 
informed consent was obtained from patient, par-
ent, or guardian. Exclusion criteria were severe ma-
laria signs, underlying disease, positive pregnancy 
test result, or suspected alternative reason for the 
febrile condition.

Study Procedure
The enrolled patients were given treatment and fol-
lowed-up at the referral centers. They received the 
antimalarial standard treatment orally (i.e., fixed-
dose combination of artesunate [4 mg/kg] plus amo-
diaquine [10 mg/kg]: ASAQ Winthrop; Sanofi Phar-
maceuticals, https://www.sanofi.com) once a day 
for 3 consecutive days. A single low-dose (0.25 mg/
kg) of primaquine (primaquine phosphate; Sanofi 
Pharmaceuticals) was co-administered on the first 
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Table 1. Characteristics of patients in 3 clinical trials testing increased sensitivity of Plasmodium falciparum to artesunate/amodiaquine 
despite 14 years as first-line malaria treatment, Zanzibar 

Characteristic 
Study group 

2002–2003 2005 2017 
No. screened* 2,097 2,076 9,062 
No. enrolled 207 177 146 
M:F ratio 104:103 82:95 101:45 
Median age (range) 24 (5–73) mo 28 (4–60) mo 16 (2–60) y 
Geometric mean parasite density per microliter (range) 19,731 (2,000–198,000) 20,890 (2,000–176,000) 7,886 (75–304,000) 
Mean  SD temperature, °C 38.7  1.2 37.8  1.2 37.8  1.4 
Mean  SD hemoglobin level, g/dL 8.5  1.6 9.2  1.4 11.9  2.2 
*Febrile patients attending healthcare facilities with suspected uncomplicated P. falciparum malaria infections. 

 

 
Table 2. Characteristics of patients fulfilling study protocol in 2017, by age group and parasite density, Zanzibar 

Characteristic 

Study group 
2017, all 
patients 

2017, children 
<5 y of age 

2017, children 
<10 y of age 

2017, children 
<15 y of age 

2017, parasite 
density >2,000/L 

Total 142 21 42 66 115 
M:F ratio 99:43 13:8 28:14 45:21 81:34 
Median age (range) 17 (2–60) y 48 (21–60) mo 5.5 (1.8–10) y 9 (1.8–15) y 16 (1.8–60) y 
Geometric mean parasite density/L 
(range) 

7,899  
(75–304,000) 

15,773  
(85–304,000) 

11,847  
(85–304,000) 

10,618  
(85–304,000) 

14,305  
(2,175–304,000) 

Mean  SD temperature, C 37.8  1.4 38.2  1.2 38.1  1.1 38.2  1.2 37.9  1.4 
Mean  SD hemoglobin level, g/dL 11.9  2.2 9.1  1.7 9.8  1.9 10.6  2.1 11.8  2.3 
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day (D0). All doses were administered under direct 
supervision and observation for 30 min. If vomit-
ing occurred, the patient was again given the same 
supervised dose and withdrawn from the study if a 
second vomiting occurred.

After the first 3 treatment days (D0, D1, and D2), 
the follow-up consisted of fixed appointments on 
D3, D7, D14, D21, and D28 and whenever the patient 
experienced any clinical symptoms. To ensure opti-
mal compliance to the study protocol, an incentive 
of 5,000 Tanzanian shillings (US $2.20) was provided 
upon each visit, mainly to cover transportation costs.

At each follow-up visit, standard physical exami-
nation was performed and temperature was record-
ed. Finger-prick blood samples were collected for 
thick blood films and dried blood spots on filter paper 
(3MM; Whatman, https://www.cytivalifesciences.
com). These filter papers were packaged in desiccated 
individual plastic bags and sent to the Karolinska In-
stitutet (Stockholm, Sweden) for molecular analyses.

Microscopy reading of Giemsa-stained blood 
films was performed by 2 experienced microscopists 

at each visit. We quantified parasitemia by using the 
standard approximation method (40× parasites/200 
leukocytes). A blood film was defined as positive if 
>1 asexual parasite was found per 1,000 leukocytes 
and the final parasite density was the average of 2 in-
dependent reads. An independent examination by a 
third microscopist was performed in case of discor-
dant reads. We measured hemoglobin levels by us-
ing a HemoCue B-Hemoglobin Photometer (https://
www.hemocue.com) on D0, D3, D7, D14, and D28, or 
any day of clinical suspicion of (hemolytic) anemia.

Molecular Analyses
We conducted PCR screening for all filter pa-
per blood spots collected on D0, D3, D7, and D28 
after DNA was extracted by using the Chelex-
boiling method (21). A quantitative PCR specific 
for the rRNA genes of Plasmodium species was  
used to screen for parasite DNA and estimate para-
site densities (21). Samples with cycle values <40 in 
duplicate runs were considered parasite positive. 
Single-nucleotide polymorphisms (SNPs) in the  
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Figure 2. Comparison of 
parasite clearance rates until 
day 3 posttreatment for 3 study 
periods, Zanzibar. Microscopy 
determined geometrical mean 
parasite densities. Only parasite 
densities >2,000 parasites/μL 
on day 0 were included in 2017. 
Microscopy negative samples 
were given an arbitrary value of 
1 parasite/μL.

 
Table 3. Parasite clearance determined by microscopy in Plasmodium falciparum–positive persons, Zanzibar* 

Characteristic 

Study group 

2002–2003, n = 206 2005, n = 172 
2017, all patients, 

n = 142 
2017, age <5 y, 

n = 21 
2017, parasite density 

>2,000/L, n = 115 
Parasite positivity by microscopy, no.; % (95% CI) 
 Day 0 206; 100 (98–100) 172; 100 (98–100) 142; 100 (97–100) 21; 100 (84–100) 115; 100 (97–100) 
 Day 1 137; 67 (60–73) 64; 37 (30–45) 58; 41 (33–49) 12; 41 (34–78) 53; 46 (37–56) 
 Day 2 18; 9 (5–13) 1; 0.6 (0–3) 2; 1 (0–5) 0; 0 (0–16) 1; 1 (0–5) 
 Day 3 1; 0.5 (0–3) 0; 0 (0–2) 1; 0.7 (0–4) 0; 0 (0–16) 0; 0 (0–3) 
Geometric mean parasite density/µL for parasite-positive persons (range) 
 Day 0 19,858  

(2,000–198,447) 
20,822  

(2,000–176,000) 
7,899  

(75–304,000) 
15,773  

(85–304,000) 
14,305  

(2,175–304,000) 
 Day 1 359 (9–173,882) 397 (12–25,000) 822 (30–13,700) 802 (64–4,970) 83 (30–13,700) 
 Day 2 89 (32–552) 560, NA 500 (250–1,000) NA, NA 1,000, NA 
 Day 3 78, NA NA, NA 120, NA NA, NA NA, NA 
*Values are proportions of patients positive by microscopy and with geometric mean parasite densities on days 0, 1, 2, and 3 after treatment. NA, not 
applicable. 
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P. falciparum multidrug-resistance 1 (pfmdr1) and P. 
falciparum chloroquine-resistance transporter (pfcrt) 
genes, associated with amodiaquine resistance (8,9) 
were analyzed in all D0 samples. SNPs at positions 
pfcrt K76T, pfmdr1 N86Y, Y184F, and D1246Y were 
analyzed according to established nested PCR–re-
striction fragment length polymorphism protocols 
(21). In addition, polymorphisms in the 850-bp frag-
ment of the P. falciparum Kelch13 propeller domain 
(pfk13), associated with artemisinin resistance were 
analyzed by using nested PCR amplification with 
Q5 high-fidelity polymerase (New England Biola-
bs, https://www.neb.uk.com), followed by direct 
Sanger sequencing of the PCR amplicon (24).

Study Outcomes
The primary outcome was PCR-corrected treatment 
failure rates assessed after 28 days. Secondary out-
comes were parasite and fever clearance rates by D3, 
hemoglobin decrease by D7, residual PCR positivity, 
and D0 genotype profiles associated with parasite tol-
erance/resistance.

Comparator Studies
We compared the current clinical trial with 2 pre-
vious in vivo trials conducted in Zanzibar during 
2002–2003 (20) and 2005 (A. Bjorkman, unpub. 
data) (ClinicalTrials.gov identifiers NCT03764527 
and NCT03768908). Both studies were open-label, 
randomized, 2-armed studies comparing in vivo 
efficacy of ASAQ and artemether/lumefantrine 
in children (<5 years of age) with uncomplicated 
P. falciparum malaria (range 2,000–20,0000 para-
sites/μL). Study procedures were similar to those 

in 2017. We performed paired PCR genotyping of 
the P. falciparum merozoite surface protein 2 gene 
in samples collected on D0 and for recurrent para-
sitemia days 14–28 (20) to differentiate reinfection 
from recrudescence.

We compared prevalences of molecular markers 
of drug resistance during 2002–2003, 2005, and 2017, 
as well as published data for 2010 and 2013 (21). Mo-
lecular genotyping of SNPs was conducted by using 
the same protocols (21) in all studies. Pfk13 sequenc-
ing was only conducted in samples from 2017.

Samples Size
Sample size for the 2017 clinical trial was calculated 
for an estimated efficacy rate of 95% and a 95% CI 
within a total width of 10%. To achieve this power, 90 
patients were required after attrition losses estimated 
to be 20%. However, we targeted 150 patients, a com-
parable number to those of previous trials (2002–2003 
and 2005).

Statistical Analyses
We entered data into Microsoft Excel (https://www. 
microsoft.com)  and cleaned data by using GSPro 
(https://www.dji.com). We performed statistical 
analyses by using Stata (https://www.stata.com). We 
calculated 95% CIs for proportions of patients cured 
by D28 by using the exact method described by Fa-
gan (25); we compared proportions by using the Fish-
er exact test. We assessed associations between PCR 
positivity and patient characteristics at study baseline 
by using the Fisher exact test or Wilcoxon rank-sum 
(Mann-Whitney) test. We conducted trend analyses 
for genotypes by using logistic regression and year 
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Table 4. Artesunate/amodiaquine treatment outcome with 28-day follow-up for increased sensitivity of Plasmodium falciparum to 
artesunate/amodiaquine despite 14 years as first-line malaria treatment, Zanzibar 

Year of study, group No patients* 
No. (%) positive 

on day 3 
No. (%) with parasite 

recrudescence† 
No. (%) with recurrent 

new infection p value‡ 
2002–2003, all patients§ 206 1 (0.5) 13 (6) 44 (22) Referent 
2005, all patients§ 172 0 7 (4) 16 (9) Referent 
2017, all patients 142 1 (1) 0 0 0.003 
2017, children <5 y of age 21 0 0 0 0.614 
2017, children <10 y of age 42 0 0 0 0.243 
2017, children <15 y of age 66 0 0 0 0.055 
2017, >2,000 parasites/µL 115 0 0 0 0.006 
*Number fulfilling follow-up as per protocol. 
†After PCR correction. 
‡p value when compared with 2002–2003 and 2005 combined. 
§All patients were ≤5 y of age and had parasite densities >2,000 parasites/µL in 2002–2003 and 2005. 

 

 
Table 5. Parasite clearance determined by qPCR after treatment with ASAQ and single, low-dose primaquine, Zanzibar, 2017* 
Day after treatment Parasite positivity by PCR, no.; % (95% CI) qPCR-determined geometric mean parasite density/L (range) 
Day 3 90; 63 (55–71) 2 (<1−796) 
Day 7 42; 30 (22–37) <1 (<1−18) 
Day 28 9; 6 (2–10) 1 (<1−58) 
*ASAQ, artesunate/amodiaquine; qPCR, quantitative PCR. 
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as a continuous variable. We performed analysis for 
the proportion of patients harboring mutant alleles 
(i.e., only mutant, or mixed with wild-type), as well 
as for the ratio of infections with mutants versus in-
fections with the corresponding wild-types (mutants 
pfcrt 76T; pfmdr1 86Y, Y184, and 1246Y).

Results

Patients
The 14 health centers screened 9,062 febrile patients 
during May–September 2017; a total of 233 (2.6%) were 
positive by mRDT, and 146 satisfied all inclusion crite-
ria and thus enrolled at the 3 referral centers. We pro-
vide demographic, clinical, and laboratory character-
istics for patients (Table 1), along with data from the 
previous clinical trials during 2002–2003 and 2005. De-
spite different inclusion criteria regarding age and par-
asitemia, the geometrical mean parasite densities and 
ranges at study enrollment were similar (Table 2). A 
total of 142 (97%) of 146 patients in 2017 completed the 
study follow-up to D28. Four patients were excluded 
or did not complete follow-up because of vomiting on 
D1, itching on D3, too long travel distance to a referral 
center, and travel to mainland Tanzania.

Treatment Outcomes
Parasite clearance rates by microscopy up to D3 were 
similar in the 3 trials (Figure 2; Table 3). In 2017, one 
patient remained malaria positive at D3, after which 
all were microscopy negative up to D28 (Table 4). 
The cure rate of 100% (95% CI 97.4%–100.0%) in 2017 
was higher when compared with the PCR-adjusted 
cure rate for 2002–2003 and 2005 combined (358/378, 
94.7% [95% CI 91.9%–96.7%]; p = 0.003). Statistical sig-
nificance was maintained after including only patients 
with >2,000 parasites/μL on day 0 in 2017 (p = 0.006), 
and near significance (p = 0.055) was achieved when 

adjusting for age <15 years (i.e., with <5 years of expo-
sure to major malaria transmission. Numbers of recur-
rent parasitemias, defined as new infections during the 
28 days of follow-up, were 44 (22%) in 2002–2003, 16 
(9%) in 2005, and none (0%) in 2017, confirming higher 
malaria transmission rates in 2002–2005.

PCR positivity and parasite density estimates by 
quantitative PCR were analyzed only for the 2017 
study (Table 5). Patients remained positive for much 
longer by PCR than by microscopy. PCR positivity on 
D3 and D7 were strongly associated with age, parasite 
density at study enrollment, baseline temperature, and 
hemoglobin value (Table 6). Associations were not sig-
nificant for persons who were PCR positive on D28.

Fever clearance rates were similar: temperatures 
<37.5°C by D3 in 92.8% (95% CI 88.4%–95.9%) of pa-
tients in 2002–2003, 98.8% (95% CI 95.9%–99.9%) of 
patients in 2005, and 97.9% (95% CI 94.0%–99.6%) of 
patients in 2017. Hemoglobin levels at enrollment (D0) 
were higher in all patients in 2017 (Table 1) but simi-
lar in children <5 years of age when compared with 
2002–2003 and 2005 (Table 2). The average decrease by 
D7 was –1.10 g/dL (range −6.1 g/dL to –3.3 g/dL) in 
2017, when primaquine was added to ASAQ, and -0.20 
g/dL (range –3.6 g/dL to –3.4 g/dL) in 2002–2003 after 
ASAQ alone (p<0.001). However, after adjusting for 
hemoglobin level at D0, the decrease was more pro-
nounced in 2002–2003 (–0.60 g/dL) than in 2017 (–0.09 
g/dL) (p = 0.003). There was no case of severe anemia 
(hemoglobin level <5 g/dL) at D0 or D7 in any study. 
No patient experienced any serious adverse event.

Polymorphisms in pfcrt, pfmdr1, and pfk13 Genes
There was a significant reduction of pfcrt K76T prev-
alence from 98.0% in 2003 to 4.9% in 2017 (p<0.001) 
(Figure 3) and negative trends were also seen for pfm-
dr1 86Y, Y184, and 1246Y, all associated with reduced 
sensitivity to amodiaquine (8,9,26). Pfmdr1 YYY and 
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Table 6. Association between PCR positivity on days 3, 7, and 28 after treatment and patient characteristics at study baseline, 
Zanzibar* 

Characteristic 

PCR 
negative, 

day 3 

PCR 
positive, 

day 3 

p 
value,† 
day 3 

PCR 
negative, 

day 7 

PCR 
positive, 

day 7 

p 
value,† 
day 7 

PCR 
negative, 
day 28 

PCR 
positive, 
day 28 

p 
value,† 
day 28 

Total (%) 52/142 
(37) 

90/142 
(63) 

NA 100/142 
(70) 

42/142 (30) NA 133/142 
(94) 

9/142 (6)  

M:F ratio 33:19 65:25 0.35 70:30 28:14 0.70 91:42 72 0.72 
Median age, y (range) 24 (2–57) 14 (2–60) <0.001 19 (2–60) 12.5 (2–54) 0.01 17 (2–60) 14 (9–56) 0.54 
Geometric mean parasite 
density/µL (range) 

3,998  
(75–

120,955) 

12,011  
(78–

304,269) 

<0.001 6,185  
(76–

145,750) 

14,940 
(561–

304,269) 

0.01 7,847 
(78–

304,269) 

11,259 
(2,730–
56,304) 

0.61 

Mean  SD temperature, 
C 

37.2  1.2 38.1  1.3 <0.001 37.7  1.4 38.0  1.2 0.27 37.8  1.4 38.0  1.2 0.62 

Mean  SD hemoglobin 
level, g/dL 

12.4  2.2 11.7  2.2 0.09 12.2  2.2 11.3  2.2 0.01 12.0  2.3 11.4  1.5 0.37 

*NA, not applicable. 
†Calculated by Fisher exact test (for sex) or Wilcoxon rank-sum (Mann-Whitney) test for continuous variables. 
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YYD were the most frequent haplotypes in 2002–
2003, and the NYD and NFD haplotypes were most 
frequent and the YYY totally absent in 2017 (Table 7). 
The decrease of YYY and YYD was highly significant 
between 2002–2003 and 2017 (p<0.001).

Regarding the pfK13 gene, 139 (98%) of 142 sam-
ples collected 2017 were successfully sequenced. No 
nonsynonymous SNP was identified. Two synony-
mous mutations were found, the SNPs C469C (5 sam-
ples) and S477S (1 sample). Five samples were from 
patients at the Bububu health center, and 1 (C469C) 
was from a patient in Uzini who had traveled to 
mainland Tanzania.

Discussion
The high cure rate in 2017 (100%) was significantly 
higher than the combined cure rate in 2002–2003 and 
2005 (94.7%) (p = 0.003). The microscopy-determined 
parasite clearance was as rapid as that in 2002–2003 
and 2005 (<3 days), and fever clearance was similar. 
These findings confirm maintained full efficacy of the 
artesunate compound (17) and suggest an increased 
cure rate by ASAQ. Compliance to the study protocol 
was high: only 4/146 patients were unable to com-
plete follow-up despite logistical constraints of con-
ducting the clinical trial in the low-transmission con-
text in 2017. A large enough sample size was achieved 
by recruiting patients from 11 peripheral satellite 
health units and 3 referral health facilities (in which 
follow-up attendances were conducted) and by in-
cluding patients of all ages and all parasite densities.

High in vivo efficacy is in agreement with pre-
vious findings from Madagascar (27) and Côte 
d’Ivoire (28) after 6 and 10 years of ASAQ use as 
first-line treatment, respectively. It might be argued 
that the observed higher cure rate in 2017 may be 
caused by a different study age group; added sin-
gle low-dose primaquine; fixed-dose versus a loose 
combination of ASAQ compounds; or reduced ma-
laria transmission compared with that in 2002–2003 
and 2005. However, age-related protective immu-
nity in the population in Zanzibar has decreased 
substantially (2) and thus is expected to have had 
little influence on cure rate, especially in children 
<15 years of age. Single low-dose primaquine is not 
expected to have had any major effect on the asexual 
P. falciparum stage (29), and whereas different ef-
ficacies by different ASAQ formulations have been 
reported in a large meta-analysis (30), no significant 
difference was found between a nonfixed loose com-
bination of ASAQ with an amodiaquine dose of 30 
mg/kg (used in the studies during 2002–2003 and 
2005) compared with a fixed combination with same 

amodiaquine dose (used in our 2017 study). In ad-
dition, drug intake with the loose combination was 
highly supervised during 2002–2003 and 2005; some 
new infections might have been falsely misinter-
preted as recrudescent during higher transmission 
in 2002–2003 and 2005, the opposite might also occur 
(31–33). A potential general limitation in the in vivo 
assessment of ASAQ efficacy, although according to 
World Health Organization recommendations (22), 
is that a 28-day follow-up might miss some late re-
crudescences (20). However, this possibility should 
not affect the comparative approach.
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Figure 3. Frequency of polymorphisms associated with 
amodiaquine resistance in Plasmodium falciparum infections in 
Zanzibar, 2002–2017. Black bars indicate resistance alleles, gray 
bars indicate mixed infections, and white bars indicate wild-type 
alleles. Error bars indicate 95% CIs of proportions of infections 
harboring resistance alleles (either alone or mixed infections). 
Values in parentheses are the total number of genotyped samples 
shown next to the study year. Trend analysis: p<0.001 for pfcrt 76T 
+ mixed, pfmdr1 86Y + mixed, pfmdr1 Y184 + mixed, pfmdr1 1246Y 
+ mixed; p<0.001 for pfcrt 76T, pfmdr1 86Y, pfmdr1 Y184Y; and p = 
0.016 for pfmdr1 1246Y. Pfcrt, P. falciparum chloroquine-resistance 
transporter gene; Pfmdr1, P. falciparum multidrug-resistance gene.
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A minor reduction of hemoglobin levels from 
D0 to D7 was similarly observed in 2017 and 
2002–2003 and 2005 and is consistent with common 
findings after ACT treatment (34). This reduction 
supports the safety of adding single low-dose pri-
maquine in 2017 despite ≈10% prevalence of glu-
cose-6-phosphate dehydrongenase deficiency in 
the population in Zanzibar.

Residual parasite positivity by PCR on D3 and 
several weeks posttreatment despite observed high 
ACT efficacy has been described and does not nec-
essarily imply drug resistance (35–37). A key factor 
associated to such positivity was, as expected, high 
initial parasite density. What low-grade PCR positiv-
ity represents remains unclear, be it residual parasite 
DNA, gametocytes, or suppressed dormant and po-
tentially surviving parasites (37,38).

Our study showed no sign of increased toler-
ance to artesunate because no resistance-associated 
mutations were detected in the pfk13 gene, in accor-
dance with several other studies in Africa (4). More-
over, prevalences of the SNPs pfcrt 76T and pfmdr1 
86Y, Y184, and 1246Y associated with amodiaquine 
resistance (8,9,26) all decreased steadily during the 
observation period (Figure 3). Amodiaquine and 
chloroquine do generally select for similar muta-
tions in the Pfcrt and Pfmdr genes. However, whereas 
chloroquine, used as first-line treatment up to 2003, 
did strongly select such mutations, this finding was 
reversed when amodiaquine combined with artesu-
nate became first-line treatment. This finding is quite 
in contrast to longitudinal studies in areas that used 
other ACTs as first-line treatment. P. falciparum geno-
types associated with tolerance/resistance to the ACT 
partner drugs lumefantrine (18,39), sulfadoxine/py-
rimethamine (40,41) and piperaquine (12) have all 
been shown to consistently increase over time, after 
respective ACT use.

A major objective for combination therapy is for 
combined compounds to protect each other (i.e., pre-
venting selection of resistance to either drug and both 

drugs combined). In Zanzibar, our in vivo and molec-
ular findings suggest that P. falciparum has become in-
creasingly sensitive to the combination ASAQ, despite 
its widescale use since 2003–2004. Although changes 
in allele frequencies in Zanzibar could be caused by 
genetic drift after rapid reduction in the parasite pop-
ulation in Zanzibar causing a genetic bottleneck, the 
temporal trends of Pfcrt and Pfmdr1 alleles suggest a 
selection event as more likely. However, why are pfcrt 
and pfmdr1 mutations associated with amodiaquine 
resistance selected against, in favor of the drug-sen-
sitive wild-types over time despite being temporarily 
selected after each ASAQ treatment (8,9)?

Resistance mutations confer an advantage in the 
presence of the drug, although such mutations often 
come with fitness costs in the absence of the drug 
(42–44) (sometimes additional compensating muta-
tions might also restore fitness in mutated parasites 
[45]). Thus, spread of drug resistance alleles might 
mostly be restricted when in competition with wild-
type parasites in the absence of the drug (46,47). Such 
competition is expected in contexts such as Zanzibar, 
where decreasing transmission rates have led to a 
corresponding decrease in ASAQ use over time, es-
pecially because treatment is normally restricted to 
mRDT-positive patients only (15). In addition, a large 
proportion of infections are subpatent and thus rep-
resent a large reservoir of competing parasites unex-
posed to antimalarial drugs (2).

Potentially contributing to increased sensitivity 
to amodiaquine are infections imported from main-
land Tanzania (2,48), where the first-line treatment is 
artemether/lumefantrine, which selects the opposite 
genotypes of those for amodiaquine (8–10). Another 
potential reason for less resistance selection by amo-
diaquine compared with lumefantrine might be dif-
ferent pharmacokinetic profiles and thus different 
selection windows after treatment with the respective 
ACTs. However, the immediate selection dynam-
ics posttreatment have appeared rather similar for 
amodiaquine and lumefantrine (8–10). Accordingly, 
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Table 7. Plasmodium falciparum multidrug-resistance 1 haplotype frequencies in clinical trials of increased sensitivity to 
artesunate/amodiaquine despite 14 years as first-line malaria treatment, Zanzibar* 

Haplotype 
Study group 

p value† p value‡ 2002–2003, n = 161 2005, n = 156 2010, n = 92 2013, n = 87 2017, n = 140 
YYY 31.1 20.5 12.0 8.0 0.0 <0.001 <0.001 
YYD 57.1 63.5 38.0 31.0 2.1 <0.001 <0.001 
YFD 0.0 4.5 7.6 0.0 0.0 <0.001 NA 
NYD 11.2 7.1 26.1 27.6 58.6 <0.001 <0.001 
NFY 0.0 0.0 0.0 1.1 0.7 0.25 0.46 
NFD 0.6 4.5 16.3 32.2 38.6 <0.001 <0.001 
*Values are percentages unless indicate otherwise. NA, not applicable. 
†Comparing frequencies between all years by Fisher exact test. 
‡Comparing frequencies between 2002–2003 and 2017 by Fisher exact test. 
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elimination kinetics of desethyl-amodiaquine, (elimi-
nation half-life initially short but terminally >7 days) 
(16) and lumefantrine (elimination half-life ≈3 days) 
(49) are not highly different.

In areas of increased resistance to partner drugs, 
ACT cure rates have mostly remained relatively high 
as long as artemisinins remained highly effective 
(11), except for artesunate–sulfadoxine/pyrimeth-
amine (40,41). When artemisinins were still effective 
in Southeast Asia, selection of mefloquine resistance 
after previous monotherapy was initially stopped 
and temporarily reversed when the ACT artesu-
nate/mefloquine was introduced (50). However, 
reduced partner drug efficacy will always represent 
increased risk for development and selection of arte-
misinin resistance. When artemisinin starts to fail in 
addition to the failing partner drug, an accelerating 
and alarming development toward multidrug resis-
tance to the combination is expected. This sugges-
tion has occurred in the Greater Mekong Subregion 
for dihydroartemisinin/piperaquine (12).

Despite 14 years of widescale use of ASAQ as a 
first-line treatment for malaria in Zanzibar, there are 
no indications of increased tolerance/resistance to 
either drug. Our in vivo and molecular findings sug-
gest an increased antimalarial activity by the partner 
drug amodiaquine. We believe that this finding might 
be primarily caused by fitness costs of the amodia-
quine tolerance/resistance–related mutations in the 
pfcrt and pfmdr1 genes in the low-transmission con-
text with restricted and compliant use of ASAQ to 
parasitologically confirmed malaria cases only, and 
with relatively frequently imported parasites without 
chloroquine/amodiaquine resistance–associated mu-
tations. ASAQ might have a comparative advantage, 
especially in low-transmission areas compared with 
other ACTs against development or spread of arte-
misinin- (and ACT-) resistant parasites.
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