Article DOI: https://doi.org/10.3201/eid2712.210491

Novel Filoviruses, Hantavirus, and Rhabdovirus in Freshwater Fish, Switzerland, 2017

Appendix

Methods

Bioinformatics

Reads were quality-trimmed using trimmomatic v. 0.36 (28), and host-derived sequences were removed by aligning reads to the European perch genome (UTU_Pfluv_1.1, Bioproject PRJNA450919) using STAR v. 2.6.0c (1). Non-aligned reads were assembled with SPAdes v. 3.12.0 (2). The resulting scaffolds were screened for homologies on the nucleotide and amino acid levels using BLASTn v. 2.7.1+ (3) against viral nucleotide sequences in GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and DIAMOND v. 0.9.18 (4) and against viral protein sequences in UniProt (https://www.uniprot.org/), respectively. (Databases were downloaded on 20 May 2020.)

RT-PCR, RACE, Sanger sequencing

To fill gaps between HTS scaffolds, we reverse-transcribed extracted RNA to cDNA with SuperScript III Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA) and performed PCR assays with Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs, Ipswhich, MA, USA) and scaffold-specific primers (Appendix Table 3) according to the manufacturers' instructions. We gel-purified amplicons using the NucleoSpin Gel & PCR Cleanup Kit (Macherey-Nagel, Oensingen, Switzerland) and sequenced them using a 3730 DNA Analyzer (Thermo Fisher Scientific) with the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific), using standard protocols. We performed 3' and 5' RACE, as described previously on RNA extracted from pooled organs and CNS as well as cell culture supernatants (*5*). We purified RACE products and sequenced them as described above. Resultant data were analyzed with Geneious v 9.1.8 (Biomatters, Auckland, New Zealand).

In Situ hybridization (ISH)

We conducted chromogenic ISH on all of the FFPE tissues used for histopathology. Staining was performed with the RNAscope system (Advanced Cell Diagnostics, Newark, CA, USA). Using the RNAscope 2.5 HD Assay-Brown according to the manufacturer's instructions. ISH probes were designed by the company for EGLV (catalog #590061), BRPV (#590031), FIWIV (#590041), and OBLV (#590051). We counterstained slides with Mayer's hemalum solution (Merck KGaA, Darmstadt, Germany) and mounted them with Aquatex (Merck KGaA). Sections of apparently healthy European perch from a different origin, which we examined for a normal health control, served as negative controls. ISH process controls consisted of brain tissue sections of animals with bovine astrovirus CH13 (BoAstV CH13) infection and a BoAstV CH13-specific RNAscope probe [#406921] tested in parallel to each ISH experiment (*6*).

References

- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNAseq aligner. Bioinformatics. 2013;29:15–21. <u>PubMed</u> https://doi.org/10.1093/bioinformatics/bts635
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. <u>PubMed https://doi.org/10.1089/cmb.2012.0021</u>
- Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. <u>PubMed https://doi.org/10.1186/1471-2105-10-421</u>
- Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. <u>PubMed https://doi.org/10.1038/nmeth.3176</u>
- Hierweger MM, Werder S, Seuberlich T. Parainfluenza virus 5 infection in neurological disease and encephalitis of cattle. Int J Mol Sci. 2020;21:498. <u>PubMed https://doi.org/10.3390/ijms21020498</u>
- 6. Küchler L, Rüfli I, Koch MC, Hierweger MM, Kauer RV, Boujon CL, et al. Astrovirus-associated polioencephalomyelitis in an alpaca. Viruses. 2020;13:50. <u>PubMed</u> <u>https://doi.org/10.3390/v13010050</u>

	Scaffold			DIAMOND best protein hit	Amino acid alignment		
Virus family	ID	Length	kmer coverage	Accesssion number protein virus	Identity (%)	Length [nt]	Query coverage (%)
Hantaviridae	10	6509	3010	A0A2P1GNS4 Large protein W. red spikefish virus	34.4	2104	94.8
	59	3784	11122	A0A2P1GNS8 Glycoprotein W. minipizza batfish virus	25.4	836	63.1
	550	2160	15043	A0A2P1GNX7 Nucleoprotein W. red spikefish virus	30.3	330	42.4
Rhabdoviridae	2058	1454	5.8	Q8UYI1 Nucleocapsid protein sea trout rhabdovirus	42.3	267	54.8
	4052	1146	3	Q8UY99 Glycoprotein lake trout rhabdovirus	87.5	80	97.2
	6439	960	5.7	Q8V316 Phosphoprotein sea trout rhabdovirus	62.2	74	67.5
	8194	873	1.9	K7X7F6 Large protein perch rhabdovirus	95.2	84	89.4
	10813	771	5.2	Q8V315 Matrix protein sea trout rhabdovirus	94.8	213	82.9
	10889	768	1.9	A0A0A7 Large protein eel virus European X	76.4	254	98.8
	12097	731	2.4	K7X7F6 Large protein perch rhabdovirus	87.2	243	99.7
	37625	394	1	Q8V317 Large protein lake trout rhabdovirus	93.2	426	87.9
	42117	370	2	K7X7F6 Large protein perch rhabdovirus	89	354	92.7
	52025	331	1.4	Q8V317 Large protein lake trout rhabdovirus	93.8	96	99.7
	52641	329	1.1	K7X7F6 Large protein perch rhabdovirus	84.4	122	98.9
	68156	289	1.3	Q8UY99 Glycoprotein lake trout rhabdovirus 903/87	77.6	303	94.7
	71803	282	0.96	Q8V313 Large protein sea trout rhabdovirus	66.7	84	98.8
	89460	256	2.4	K7X7F67 Large sprotein perch rhabdovirus	98.2	110	99.7
	90246	255	3.8	K7X7F6 Large protein perch rhabdovirus	82.1	84	98.4
	97442	247	1.7	Q8V313 Polymerase protein sea trout rhabdovirus	90.8	130	99
Filoviridae	4	14593	23.5	A0A2P1GMM1 Large protein Huángjiāo virus	50.3	843	17.6
	5	13764	15.2	A0A2P1GMM1 Large protein Huángjiāo virus	59.8	2145	46.5
	14 [†]	10362	4.8	A0A2P1GMM1 Large protein Huángjiāo virus	68	1471	42.5
	1005	3259	3	A0A2P1GMM1 Large protein Huángjiāo virus	47.1	1089	99.9
	10054	3259	3	A0A2P1GMM1 Large protein Huángjiāo virus	47.1	1089	99.9
	5282†	1945	4.1	A0A2P1GMM1 Large protein Huángjiāo virus	41	648	99.6
	7085	1729	2.2	A0A2P1GMM5 Nucleoprotein Huángjiāo virus	38.8	389	66.8
	11776	1389	1.8	A0A2P1GMM1 Large protein Huángjiāo virus	41.6	334	71.7
	34171†	779	2.6	A0A2P1GMM5 Nucleoprotein Huángjiāo virus	61.6	250	96.3
	50926	573	3	A0A2P1GMM1 Large protein Huángjiāo virus	58.4	190	99.5
Other	1	10069	95	A0A1I9QNF6 Capsid protein marbled eel polyomavirus	27.1	491	13.8
	201	2764	6.8	A0A1S7J028 LargeT Rousettus aegyptiacus polyomavirus 1	28.6	255	26.6
	44589	359	0.7	A0A2P1GNG4IPolyproteinIBěihěi rabbitfish calicivirus	57.4	115	95.3

Appendix Table 1. Results of the bioinformatics pipeline for virus discovery in samples from European perch*

*Abbreviations: W., Wēnling; put, putative. †These scaffolds were linked by RT-PCR resulting in the sequence of a novel virus here named Kander virus (KNDV).

Appendix Table 2. Comparison of conserved terminal sequences in genome segments of selected genera of the order Bunyavirales*

Danyavnales		
Genus	3' terminus	5' terminus
Orthohantavirus	AUCAUCAUCUG	AUGAUGAU
Orthobunyavirus	UCAUCACAUGA	UCGUG UGAUGA
Orthonairovirus	AGAGUUUCU	AGAAACUCU
Orthotospovirus	UCUCGUUAG	CUAACGAGA
Phlebovirus	UGUCGUUAG	CUAACGAGA
Actinovirus	UCAUCAUU	AA UGAUGA
(Species: Perch actinovirus, Bunyavirales)		

*Adapted from Barr JN, Weber F, Schmaljohn CS. Bunyavirales: the viruses and their replication. In: Howley PM, Knipe DM, Whelan SPJ, editors. Fields virology. 7th ed. Philadelphia, Pennsylvania, USA: Wolters Kluwer/Lippincott Williams & Wilkins; 2020. p. 706-49.

Appendix Table 3. Gene-specific primers for RT-PCRs, Sanger sequencing, and RACE

Appendix Table 5. Gene-specific primers r	or RT-FORS, Sanger sequencing, and RAGE	
Name	Sequence	Comment
RT_FiloV_3140F	TGTGAGCTCACCAACCGTAC	Confirmation
RT_FiloV_3483R	GAGCCGTTTCTCCCAAGACA	Confirmation
RT_HantaV_2950F	CCCGGAAGTCCAGAACCTTC	confirmation
RT_HantaV_3269R	CGGTCAGGGAATCATCGGAG	confirmation
RT_RhabdoV_1064F	AAATGCCATTGCCAACACCG	confirmation
RT_RhabdoV_1370R	GTACGCTCCGACAGTGTCTT	confirmation
RT_HantaV_L_493R	AAACTGAAGCTCGATGCCCA	RACE
RT_HantaV_L_322R	CCAGCTGCCCAGGGAATATC	RACE
RT HantaV L 5998F	CGTCAGGTCCTGGATCAAGG	RACE
RT HantaV L 6190F	CTCCGCTGTGAACATGGTTG	RACE
RT HantaV M 541R	TTCTGCCGCCTTTCAAAGC	RACE
RT_HantaV_M_305R	CTCTTGGATCCTGGGTGTCG	RACE
RT HantaV M 3273F	ACATAGGCACTGTCCTCAAGC	RACE
RT HantaV M 3466F	TTCCGACGAGACCTCCTTCT	RACE
RT HantaV S 526R	CAGCCTGTGTTTCCGGAGTA	RACE
RT HantaV S 281R	GCTGGATCTGAAGGCAGGAG	RACE
RT HantaV S 1656F	CCCAAACAGGTCGGTCATCA	RACE
RT HantaV S 1848F	CAAGGTGGTCTCCATGGGG	RACE
RT RhabdoV 1335E	ATCCAACATGCCCGCAAAGA	connection of contins
RT RhabdoV_1684R	TCCCAGCTCCACTAATCCCT	connection of contigs
RT RhabdoV_1004IC	GAATGGAATGGATGCCAGCG	connection of contigs
PT = Phabdo V = 2863P	CCACCACCATCCCATTTT	connection of contigs
DT Deabdol/ 3358E		connection of contigs
RT_RhabdoV_3330	CCATCCCCACTTCATAC	connection of contigs
RT_RIADUOV_3750R	CTACACCCCAACTTCTCCCT	connection of contigs
RT_RIADUOV_3703F	GTAGAGGGGAAGTTGTGCGT	connection of contigs
		connection of contigs
RI_Rhabdov_5913F	GIIGGGCGIAIGCAGACICI	connection of contigs
RI_RhabdoV_6225R	GUTUTGUGTTGAUAAAGTUA	connection of contigs
RI_Rhabdov_6256F	GATCITITCGGCATTGGGGC	connection of contigs
RI_RhabdoV_6559R		connection of contigs
RI_RhabdoV_6636F	CATGTAGAACGACGGCCCTT	connection of contigs
RI_RhabdoV_7823R	ICCICGAAIIGCCGGAIIGI	connection of contigs
RT_RhabdoV_7793F	AGTAGAGTTTCACAATCCGGCA	connection of contigs
RT_RhabdoV_8342R	CAGCGATATCAGGGATTCGGT	connection of contigs
RT_RhabdoV_8780F	GCTGAGAGCCGCTATCACAT	connection of contigs
RT_RhabdoV_9479R	GGACAACGCAGATGCCTTGA	connection of contigs
RT_RhabdoV_10828F	GAGGCTCGACAGGGATCAAG	connection of contigs
RT_RhabdoV_11124R	TCTTCTCCCCTTTGCAACTGA	connection of contigs
RT_Rhabdo_6952F	AGGAGTCAAGGGCAAGGAGA	connection of contigs
RT_Rhabdo_7555R	GCTGACTGGATTGTCTCGTCA	connection of contigs
RT_Rhabdo_6980F	ACGAGCACATCAGTATTGCCA	connection of contigs
RT Rhabdo 575R	CTCGTTTTGGATCCCCACGA	RACE
RT Rhabdo 330R	CCAATTCGCTCGGCAATCTG	RACE
RT Rhabdo 11050F	CGAATCTCTGCTTGCAGTGC	RACE
RT_Rhabdo_11222F	AGGAAGATGGCCACCATTGG	RACE
P FiloV 13to3360 1435F	CACAGTGGTAAGGGCCATGA	connection of contigs
P_FiloV_13to3360_1884R	CCGGTGTCAACGGCTGTTAT	connection of contias
P_FiloV_13to5716_12038F	GTCTGCATAGGGAAGGTGGC	connection of contias
P_FiloV_13to5716_12590R	CTTGTCGCTCCTGAAGACGT	connection of contias
Perch FiloV2 296R	TTGCAAGAATGAAGGCACACC	RACE
Perch FiloV2 511R	AAACCTTGCGGCTTGATTGG	RACE
Perch Filo//2 $14328F$		RACE
Perch Filo//2 14118F	TIGCTCTTGTCCCACCACAA	RACE
	110010110100000000	NACE .

Appendix Figure 1. Maximum-likelihood phylogenetic trees of the nucleotide sequences of Egli virus (EGLV; bold blue) genes with those of viruses belonging to representative members of the genus *Perhabdovirus.* a) nucleoprotein gene (N), b) phosphoprotein gene (P) c) matrix protein gene (M), and d) glycoprotein gene (G). Numbers near nodes on the trees indicate bootstrap values. Branches are labeled by GenBank accession number, virus name, and virus name abbreviation in parenthesis. The names of unclassified, likely perhabdoviruses are placed in quotation marks and printed without name abbreviations. The scale (bottom left) indicates the number of substitutions per site, reflected by the branch lengths.

Appendix Figure 2. Mapping of additional scaffolds identified in European perch with hits to Huángjião virus (HUJV). The HUJV genome organization is shown schematically on the top and allocated scaffolds (scaffold IDs [shortened] and GenBank accession numbers) to the genomic regions of the encoded proteins with respective hits and their identity at the amino-acid sequence level. Open reading frames (ORFs) are indicated as colored arrows. ORFs encoding HUJV-like proteins (indicated as percentages) are depicted by the same color. *NP*, nucleoprotein gene; *VP35*, polymerase cofactor gene; *GP*, glycoprotein gene; *VP30*, transcriptional activator gene; *L*, large protein gene. Question marks indicate novel ORFs.

Δ				Species	Genus
A		100 M14	627 Hantaan virus (HTNV)] Hantaan orthohantavirus	1
		99 - AJ4	10616 Dobrava virus (DOBV)] Dobrava-Belgrade orthohantavirus	Orthohantavirus
		31 L X61	031 Puumala virus (PUUV)] Puumala orthohantavirus	
100 45		JX	465397 Lóngquán virus (LQUV)] Longquan loanvirus] Loanvirus
	Г	95 KR0	72622 Nova virus (NVAV)] Nova mobatvirus] Mobatvirus
	67	N	/IG599941 Hǎinán oriental leaf-toed gecko virus (HOLG)	/)] Gecko reptillovirus] Reptillovirus
		43 DQ	325771 Thottopalayam virus (TPMV)] Thottopalayam thottimvirus] Thottimvirus
	100	M0	3599947 Wēnlĭng yellow goosefish virus (WEYGV)	Goosefish actinovirus] Actinovirus
			- MG599953 Wēnlĭng hagfish virus (WEHV)] Hagfish agnathovirus] Agnathovirus
	45		- QGM12350 "Bern perch virus" (BRPV)] "Perch actinovirus"	1
		MG5	99950 Wēnlĭng red spikefish virus (WERSV)] Spikefish actinovirus	Actinovirus
		— MG599944	Wēnlĭng minipizza batfish virus (WEMBV)] Batfish actinovirus	
					_
R	99	M14626 Hant	aan virus (HTNV)] Hantaan orthohantavirus	1
D	97 L П	AJ410615 Do	brava virus (DOBV)] Dobrava-Belgrade orthohantavirus	Orthohantavirus
	53 L	X61035 Puun	nala virus (PUUV)] Puumala orthohantavirus]
	17	JX465415 Lór	ngquán virus (LQUV)] Longquan Ioanvirus] Loanvirus
	94	- AY52097 The	ottopalayam virus (TPMV)] Thottopalayam thottimvirus] Thottimvirus
	8 L I	KR072621 No	va virus (NVAV)] Nova mobatvirus] Mobatvirus
	Π	Q(GM12353 "Bern perch virus" (BRPV)] "Perch actinovirus"	1
	40	MG5	99951 Wēnlǐng red spikefish virus (WERSV)] Spikefish actinovirus	Actinovirus
		Ц ³³ Г	— MG599945 Wēnlĭng minipizza batfish virus (WEMBV)] Batfish actinovirus	Acunovirus
		99	— MG599948 Wēnlĭng yellow goosefish virus (WEYGV)] Goosefish actinovirus	
	LMG	599942 Hǎiná	n oriental leaf-toed gecko virus (HOLGV)] Gecko reptillovirus] Reptillovirus
			— MG599954 Wēnlĭng hagfish virus (WEHV)] Hagfish agnathovirus] Agnathovirus
2					

Appendix Figure 3. Maximum-likelihood phylogenetic trees of amino-acid sequences of Bern perch virus (BRPV; bold blue) structural proteins with those of viruses belonging to representative members of the family *Hantaviridae*. a) Glycoprotein precursor (GPC), encoded by the M segment, b) nucleocapsid protein, encoded by the S segment. Numbers near nodes on the trees indicate bootstrap values. Branches are labeled by GenBank accession number, virus name, and virus name abbreviation in parenthesis. Unclassified, likely hantaviruses and officially proposed hantavirus species names are placed in quotation marks. The scale (bottom left) indicates the number of substitutions per site, reflected by the branch lengths.

Appendix Figure 4. Detection of Bern perch virus (BRPV) genomic RNA in gills of two individual European perch (A, B) by in situ hybridization (brown labeling).