Genomic Diversity of *Burkholderia pseudomallei* Isolates, Colombia

Carolina Duarte, Franco Montufar, Jaime Moreno, Dora Sánchez, Jose Yesid Rodríguez, Alfredo G. Torres, Soraya Morales, Adriana Bautista, Mónica G. Huertas, Julia N. Myers, Christopher A. Gulvik, Mindy G. Elrod, David D. Blaney, Jay E. Gee

Author affiliations: Instituto Nacional de Salud, Bogotá, Colombia (C. Duarte, J. Moreno, D. Sanchez, A. Bautista); Clínica León XIII Universidad de Antioquia, Medellín, Colombia (F. Montufar); Centro de Investigaciones Microbiológicas del Cesar, Valledupar, Colombia (J.Y. Rodriguez); University of Texas Medical Branch, Galveston, Texas, USA (A.G. Torres, J.N. Myers); Universidad de Santander, Valledupar, Colombia (S. Morales); Universidad El Bosque, Bogotá, Colombia (M.G. Huertas); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (C.A. Gulvik, M.G. Elrod, D.D. Blaney, J.E. Gee)

DOI: https://doi.org/10.3201/eid2702.202824

We report an analysis of the genomic diversity of isolates of *Burkholderia pseudomallei*, the cause of melioidosis, recovered in Colombia from routine surveillance during 2016–2017. *B. pseudomallei* appears genetically diverse, suggesting it is well established and has spread across the region.

Melioidosis is caused by the environmental bacterium *Burkholderia pseudomallei*. Infections are acquired by direct contact with the pathogen, most commonly through traumatic inoculation with contaminated soil or water but also by ingestion or inhalation. Symptoms are nonspecific and can include pneumonia, skin lesions, abscess formation, and sepsis (1).

In Latin America, melioidosis is believed to be underdiagnosed because of the absence of reliable surveillance and the lack of available diagnostic tools and methods (2). Colombia has previously reported cases as sporadic, isolated events in a few geographic areas (2,3). The aim of this study was to genetically characterize isolates of *B. pseudomallei* recovered from clinical specimens in different departments of Colombia (4). (A department in Colombia is a geographic unit composed of municipalities led by a governor.) The goal was to better understand genetic relationships among the isolates from Colombia, as well as their relationships to isolates from other tropical and subtropical regions of the Americas. The study was internally reviewed at the US Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

Address for correspondence: Mohammad M. Obaidat, Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan; email: mmobaidat@just.edu.jo; and John D. Klena, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H18-SSB, Atlanta, GA 30329-4027, USA; email: irc4@cdc.gov

References

About the Author

Dr. Obaidat is associate professor at the faculty of veterinary medicine at Jordan University of Science and Technology. His research interest includes the epidemiology of zoonotic diseases in Jordan.
Control and Prevention (Atlanta, GA, USA) and determined not to involve human subject research.

Melioidosis is not an officially reportable disease in Colombia, but when cases are identified, department public health laboratories are required to send isolates of B. pseudomallei to the Instituto Nacional de Salud. During 2016–2017, a total of 11 isolates of B. pseudomallei were recovered from 10 melioidosis patients in the departments of Cesar (n = 4 isolates), Antioquia (n = 4), Casanare (n = 2), and Santander (n = 1) (Appendix, https://wwwnc.cdc.gov/EID/article/27/2/20-2824-App1.pdf). The most common risk factor was diabetes mellitus (n = 6); 4 of the patients died (Table). Cesar, Antioquia, Casanare, and Santander vary in population from a few hundred thousand to >6 million (4).

We performed whole-genome sequencing of the 11 isolates and deposited sequences at the National Center for Biotechnology Information under BioProject PRJNA638548. Sequences were used for multilocus sequence typing and single-nucleotide polymorphism (SNP) analysis (Appendix). The multilocus sequence types (ST) we observed were ones previously described, such as ST92, ST349, ST518, and ST1459. Two novel STs from this study were designated ST463 and ST1701. Previous entries in the PubMLST database (http://pubmlst.org) indicate that ST92 has been identified in cases associated with Puerto Rico and Brazil and in 1 person in Switzerland who had travelled to Martinique. ST349 was represented in 2 examples, one from Martinique and the other in a person from Spain who had travelled to West Africa; ST518 is represented in 4 examples. The first was in a person from Arizona, USA, in whom melioidosis developed after sustaining an injury while swimming in Costa Rica (5). In addition, ST518 was identified in B. pseudomallei isolates from 3 pet green iguanas, 2 of them in California, USA, and 1 in Belgium, all of which were presumably imported from Central or South America (6,7). ST1459 was noted in 1 isolate from Brazil.

SNP analysis determined from the whole genome sequences indicates that the Colombia isolates (N=11) are within the clade associated with Western Hemisphere B. pseudomallei based on a comparison with a panel of reference genomes (N=45) (Figure). Within this clade, a subgroup was resolved containing the Colombia genomes along with ones from Brazil and Guatemala. Also included is a genome from an isolate from a patient who had traveled to both Panama and Peru, as well as isolates from iguanas from California and Belgium, as noted, plus 1 from the Czech Republic that were presumably imported from Central or South America (Figure) (6–8).

The full panel (N = 56) was also used for quantifying SNP differences among the genomes. Patient isolates B107 and B108 had no SNPs between them, even though they were from different patients, suggesting a common source of infection or a clonal population of B. pseudomallei present in different sources. However, isolates B308 and B309 were from the same patient and had 1 SNP between them. The next closest relationship was for B199 (from Casanare), which diverged by 38 SNPs from B308 and by 39 SNPs from B309 (from Antioquia). The phylogenetic SNP tree indicates that isolates from Antioquia, Casanare, and Cesar for the most part do not uniformly group together by department. The largest divergence was seen between B109 and the genomes for B107 and B108, with >6,900 SNPs detected (all from Cesar). The amount of divergence plus the lack of grouping by department, even though we presume that patients’ main exposures would have been within a given department, suggests B. pseudomallei is well established

Table. Epidemiologic and demographic characteristics of 10 melioidosis patients, Colombia

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Sequence type</th>
<th>Department</th>
<th>Age, y/sex</th>
<th>Type of sample</th>
<th>Diagnosis</th>
<th>Medical history and risk factors</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>B107</td>
<td>1459</td>
<td>Cesar</td>
<td>71/M</td>
<td>Blood</td>
<td>Sepsis</td>
<td>Arterial hypertension</td>
<td>Died</td>
</tr>
<tr>
<td>B108</td>
<td>1459</td>
<td>Cesar</td>
<td>54/M</td>
<td>Right leg injury</td>
<td>Soft tissue infection</td>
<td>Tibial fracture</td>
<td>Recovered</td>
</tr>
<tr>
<td>B109</td>
<td>349</td>
<td>Cesar</td>
<td>56/M</td>
<td>Urine</td>
<td>Unspecified sepsis</td>
<td>Diabetes mellitus</td>
<td>Recovered</td>
</tr>
<tr>
<td>B197</td>
<td>1463</td>
<td>Cesar</td>
<td>51/F</td>
<td>Bronchoalveolar lavage</td>
<td>Pulmonary melioidosis</td>
<td>Diabetes mellitus, anemic syndrome</td>
<td>Recovered</td>
</tr>
<tr>
<td>B198</td>
<td>1701</td>
<td>Casanare</td>
<td>24/M</td>
<td>Blood</td>
<td>Pneumonia</td>
<td>None</td>
<td>Died</td>
</tr>
<tr>
<td>B199</td>
<td>518</td>
<td>Casanare</td>
<td>26/M</td>
<td>Blood</td>
<td>Unspecified sepsis</td>
<td>None</td>
<td>Died</td>
</tr>
<tr>
<td>B255</td>
<td>92</td>
<td>Santander</td>
<td>68/M</td>
<td>Blood</td>
<td>Sepsis</td>
<td>None</td>
<td>Recovered</td>
</tr>
<tr>
<td>B308*</td>
<td>518</td>
<td>Antioquia</td>
<td>64/M</td>
<td>Tracheal aspirate</td>
<td>Systemic inflammatory response syndrome</td>
<td>Diabetes mellitus</td>
<td>Died</td>
</tr>
<tr>
<td>B309*</td>
<td>518</td>
<td>Antioquia</td>
<td>81/F</td>
<td>Tracheal aspirate</td>
<td>Pneumonia</td>
<td>Kidney tumor (in studio), diabetes mellitus, arterial hypertension, hypothyroidism</td>
<td>Recovered</td>
</tr>
<tr>
<td>B310</td>
<td>1740</td>
<td>Antioquia</td>
<td>53/F</td>
<td>Blood</td>
<td>Sepsis</td>
<td>Diabetes mellitus</td>
<td>Recovered</td>
</tr>
</tbody>
</table>

*Isolates from the same patient.
in Colombia and has had time to diverge substantially since its introduction. In addition, the genomes from the 2 cases of melioidosis from pet iguanas from California and the 1 from Belgium cluster together with examples from Colombia, suggesting this region or a nearby region may have been the origin of the iguanas. Further studies, especially to recover and test environmental isolates, will improve our understanding of the population structure of \textit{B. pseudomallei} in Colombia and improve the ability of public health stakeholders to respond to cases of melioidosis.

Acknowledgments

We appreciate the Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, for performing Illumina MiSeq sequencing.

Our analysis made use of the \textit{Burkholderia pseudomallei} MLST website (http://pubmlst.org/bpseudomallei) at the University of Oxford. The development of this site has been funded by the Wellcome Trust.

About the Author

Ms. Duarte is the coordinator of the microbiology group (National Reference Library) at the Instituto Nacional de Salud in Colombia. Her primary research interest is laboratory surveillance of pathogens important for public health.

References

Puumala Virus Infection in Family, Switzerland

Pauline Vetter, Arnaud G. L’Huillier, Maria F. Montalbano, Fiona Pigny, Isabella Eckerle, Giulia Torriani, Sylvia Rothenberger, Florian Laubscher, Samuel Cordey, Laurent Kaiser, Manuel Schibler

Author affiliations: University of Geneva, Geneva, Switzerland (P. Vetter, A.G. L’Huillier, F. Pigny, G. Torriani, F. Laubscher, S. Cordey, L. Kaiser, M. Schibler); Geneva University Hospitals, Geneva (P. Vetter, M.F. Montalbano, F. Pigny, I. Eckerle, G. Torriani, F. Laubscher, S. Cordey, L. Kaiser, M. Schibler); Geneva Centre for Emerging Viral Diseases, Geneva (P. Vetter, I. Eckerle, G. Torriani, L. Kaiser); Spiez Laboratory, Spiez, Switzerland (S. Rothenberger); University of Lausanne, Lausanne, Switzerland (S. Rothenberger)

DOI: https://doi.org/10.3201/eid2702.203770

We report 3 cases of Puumala virus infection in a family in Switzerland in January 2019. Clinical manifestations of the infection ranged from mild influenza-like illness to fatal disease. This cluster illustrates the wide range of clinical manifestations of Old World hantavirus infections and the challenge of diagnosing travel-related hemorrhagic fevers.

Puumala orthohantavirus (PUUV), a species of the genus Orthohantavirus within the Hantaviridae family, is an enveloped single-strand negative-sense RNA virus (I). The case-fatality ratio of Old World hantaviruses ranges from 1%–10% for Dobrava-Belgrade and Hantaan orthohantaviruses to <1% for PUUV. Infection is transmitted by direct inhalation of virion-containing aerosols from rodent urine and feces. PUUV causes nephropathia epidemica, a limited form of hemorrhagic fever with renal syndrome (I). In Russia, 6,000–8,000 cases of hemorrhagic fever with renal syndrome are reported annually. Most cases occur in Western Russia and are caused by PUUV and Dobrava-Belgrade orthohantaviruses (2).

Asthenia, fever, chills, diffuse myalgia, and lumbar pain developed in a man 45 years of age 4 days after he returned to Switzerland from Samara, his hometown in central Russia (Appendix, https://wwwnc.cdc.gov/EID/article/27/2/20-3770-App1.pdf). Four days later, he sought treatment at the Geneva University Hospitals (Geneva, Switzerland) for septic shock with disseminated intravascular coagulation and kidney and liver failure. He had severe thrombocytopenia and elevated levels of C-reactive protein, procalcitonin, and leukocytes (Appendix Table 2). We transferred him to the intensive care unit for mechanical ventilation and hemodynamic support because of severe metabolic acidosis and confusion. We began treatment with broad-spectrum antimicrobial drugs, including doxycycline for possible leptospirosis. The day after admission, the patient tested positive for PUUV by real-time reverse transcription PCR (3) with a cycle threshold of 28. His serum sample tested positive for IgM and IgG against hantaviruses (Appendix Table 2). We transferred him to the intensive care unit for mechanical ventilation and hemodynamic support because of severe metabolic acidosis and confusion. We began treatment with broad-spectrum antimicrobial drugs, including doxycycline for possible leptospirosis. The day after admission, the patient tested positive for PUUV by real-time reverse transcription PCR (3) with a cycle threshold of 28. His serum sample tested positive for IgM and IgG against hantaviruses (Appendix Table 1). Shortly after his diagnosis, we administered 2 doses of 30 mg subcutaneous icatibant 6 hours apart. The patient died of multiple organ failure <60 hours after admission.

The next day, fever, lymphopenia, moderate thrombocytopenia, and hepatitis developed in the index patient’s daughter, who was 12 years of age (Appendix). She was hospitalized and tested positive for PUUV by PCR with a cycle threshold of 26. We prescribed a 5-day course of oral ribavirin starting with an initial dose of 30 mg/kg followed by 15 mg/kg every 6 hours (4). The viral load in plasma rapidly decreased. We did not detect viral RNA in urine (Appendix Table 3). Interstitial nephropathy briefly developed and subsided; she was discharged without sequelae after 7 days.

The wife of the index patient had had influenza-like symptoms in Russia during the week before her husband’s illness. Her serum sample tested positive for IgM and IgG against hantaviruses. We used a pseudovirus-based neutralization assay to confirm serologic results (Appendix Figure 1).