
Coronavirus disease (COVID-19), caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) (1), was detected in the United States in January 
2020 (2). Researchers documented deaths in the Unit-
ed States caused by COVID-19 in February (3). There-
after, surveillance testing expanded nationwide (4). 
These and other efforts revealed community spread 
across the United States and exponential growth of 
new COVID-19 cases throughout most of March. 
Growth of cases during February–April had a dou-
bling time of 2–3 days (5), similar to the doubling time 
of the initial outbreak in China (6). The rapid increase 
in cases prompted broad adoption of social distanc-
ing practices such as teleworking, travel restrictions, 

use of face masks, and government mandates pro-
hibiting public gatherings (7). The United States soon 
became a hotspot of the COVID-19 pandemic. In the 
United States, detection of new cases peaked in late 
April and steadily declined until mid-June (4). The 
decline in case numbers suggest that mandates and 
social distancing interventions effectively slowed 
COVID-19 transmission. Efforts to quantify the ef-
fects of these measures indicate that they substantial-
ly reduced disease prevalence (8,9).

In mid-June and mid-September 2020, the daily inci-
dence of COVID-19 cases in the United States increased 
a second and third time (4). Public health officials must 
effectively monitor ongoing COVID-19 transmission 
to quickly respond to dangerous upticks in disease. To 
contribute to situational awareness of COVID-19 trans-
mission dynamics, we developed a mathematical model 
for the daily incidence of COVID-19 in each of the 15 
most populous US metropolitan statistical areas (MSAs) 
(10). Each model is composed of ordinary differential 
equations (ODEs) characterizing the dynamics of vari-
ous populations, including subpopulations that did or 
did not practice social distancing.

We used online learning to calibrate our models 
for consistency with historical case reports. We also 
applied Bayesian methods to quantify uncertainties 
in predicted detection of new cases. This approach 
enabled identification of new epidemic trends despite 
variability in case detection. These findings can inform 
policymakers designing evidence-based responses to 
regional COVID-19 epidemics in the United States.

Methods

Data Used in Online Learning
We obtained reports of new confirmed cases from 
the GitHub repository maintained by The New York 
Times newspaper (11).  Each day, at varying times 
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To increase situational awareness and support evidence-
based policymaking, we formulated a mathematical mod-
el for coronavirus disease transmission within a regional 
population. This compartmental model accounts for quar-
antine, self-isolation, social distancing, a nonexponentially 
distributed incubation period, asymptomatic persons, and 
mild and severe forms of symptomatic disease. We used 
Bayesian inference to calibrate region-specific models for 
consistency with daily reports of confirmed cases in the 15 
most populous metropolitan statistical areas in the United 
States. We also quantified uncertainty in parameter esti-
mates and forecasts. This online learning approach en-
ables early identification of new trends despite consider-
able variability in case reporting.
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of day, we updated the model using cumulative 
data since January 21, 2020. The data in this analy-
sis is from January 21–June 26, 2020. We aggregated 
county-level data to obtain case counts for each of 
the 15 most populous US MSAs, which encompass 
the following cities: New York City, New York; Los 
Angeles, California; Chicago, Illinois; Dallas, Texas; 
Houston, Texas; Washington, DC; Miami, Florida; 
Philadelphia, Pennsylvania; Atlanta, Georgia; Phoe-
nix, Arizona; Boston, Massachusetts; San Francisco, 
California; Riverside, California; Detroit, Michigan; 
and Seattle, Washington. 

The political entities comprising each MSA are 
those delineated by the federal government (10). The 

number of political units (i.e., counties and indepen-
dent cities) in the MSAs of interest ranged from 2 
(for the Los Angeles and Riverside MSAs) to 29 (for 
the Atlanta MSA). The median number of counties 
in an MSA was 7; the mean was 10. The number of 
states encompassing an MSA ranged from 1 (for 8/15 
MSAs) to 4 (for Philadelphia). The median number of 
encompassing states was 1; the mean was 2.

COVID-19 Transmission Model and Parameters
We used daily reports of new cases to parameterize 
a compartmental model for the regional COVID-19 
epidemic in each of the 15 MSAs of interest. Until 
June 2020, we also parameterized curve-fitting mod-
els. However, curve-fitting models can generate only 
single-peak epidemic curves, so we abandoned this ap-
proach after the MSAs of interest all experienced multi-
ple waves of disease (Appendix 1, https://wwwnc.cdc.
gov/EID/article/27/3/20-3364-App1.pdf).

Each MSA-specific model accounted for 25 pop-
ulations (Figure 1; Appendix 1 Figure 1). We con-
sidered infectious persons to be exposed and incu-
bating virus (i.e., presymptomatic), asymptomatic 
while clearing virus, or symptomatic. The parameter 
ρE characterized the relative infectiousness of exposed 
persons and ρA characterized that of asymptomatic 
persons compared with symptomatic persons. In 
our model, infected persons quarantined with rate 
constant kQ and symptomatic persons with mild dis-
ease quarantined with rate constant jQ. We modeled 
social distancing by enabling the movement of sus-
ceptible and infectious persons between mixing and 
socially distanced (i.e., protected) populations. The 
size of the protected population was determined by 
2 parameters: λi, a rate constant; and pi, a steady-state 
population setpoint, where index i refers to the cur-
rent social distancing period. The model accounts 
for varying adherence to social distancing practices 
over time by using n distinct social distancing peri-
ods after an initial period of social distancing. Per-
sons in the protected population were less likely to 
be infected and less likely to transmit disease by a 
factor mb. Within the mixing population, disease was 
transmitted with rate constant β. The model repro-
duced a nonexponentially distributed incubation 
period by dividing the incubation period into 5 se-
quential stages of equal mean duration, given by 1/
kL. We considered infected persons in the first stage 
of the incubation period to be noninfectious and un-
detectable. A fraction of exposed persons, fA, left the 
incubation period without symptoms. The remain-
ing persons left with symptoms. The other symp-
tomatic persons, fH, progressed to severe disease; the  
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Figure 1. Illustration of the populations and processes considered 
in a mechanistic compartmental model of coronavirus disease 
daily incidence during regional epidemics, United States, 2020. 
The model accounts for susceptible persons (S), exposed 
persons without symptoms in the incubation phase of disease 
(E), asymptomatic persons in the immune clearance phase of 
disease (A), mildly ill symptomatic persons (I), severely ill persons 
in hospital or at home (H), recovered persons (R), and deceased 
persons (D). The model also accounts for social distancing, 
which establishes mixing (M) and protected (P) subpopulations; 
quarantine driven by testing and contact tracing, which establishes 
quarantined subpopulations (Q); and self-isolation spurred by 
symptom awareness. Persons who are self-isolating because of 
symptoms are considered to be members of the IQ population. 
The incubation period is divided into 5 stages (E1–E5), which 
enables the model to reproduce an empirically determined 
(nonexponential) Erlang distribution of waiting times for the onset 
of symptoms after infection (12). The exposed population consists 
of persons incubating virus and is comprised of presymptomatic 
and asymptomatic persons. The A populations consist of 
asymptomatic persons in the immune clearance phase. The 
gray background indicates the populations that contribute to 
disease transmission. An auxiliary measurement model (Appendix 
Equations 23, 24, https://wwwnc.cdc.gov/EID/article/27/3/20-3364-
App1.pdf) accounts for imperfect detection and reporting of new 
cases. Only symptomatic cases are assumed to be detectable 
in surveillance testing. Red indicates the mixing population; 
yellow indicates the protected population; green indicates the 
quarantined population; white indicates the recovered population; 
black indicates the deceased population.
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remainder had mild disease and recovered. The 
fraction of persons with severe disease who recov-
ered is denoted as fR; the others died. We considered 
hospitalized persons (or those at home with severe 
disease) to be quarantined. Persons left the asymp-
tomatic state with rate constant cA, left the mild dis-
ease state with rate constant cI, and left the severe 
disease/hospitalized state with rate constant cH.

The model consisted of 25 ODEs (Appendix 1 
Equations 1–17). Each state variable of the model 
represented the size of a population. In addition to 
the 25 ODEs, we considered an auxiliary 1-parameter 
measurement model that related state variables to ex-
pected case reporting (Appendix 1 Equations 23, 24) 
and a negative binomial model for variability in new 
case detection (Appendix 1 Equations 25–27). We de-
signed the model to consider multiple periods of so-
cial distancing with distinct setpoints for the quasista-
tionary protected population size. The model always 
included an initial period of social distancing. The 
number of additional social distancing periods was 
given by n. Here, we considered only 2 cases: n = 0 
and n = 1. We determined the best value of n by using 
model selection (Appendix 1).

The compartmental model and the auxiliary mea-
surement model for n = 0 had a total of 20 parameters. 
We considered 6 of these parameters to have adjust-
able values (Table 1) and 14 to have fixed values (Ta-
bles 2, 3) (12–20; Appendix 1). The adjustable model 
parameters were t0, the start time of the local epidem-
ic; σ>t0, the time at which the initial social distancing 
period began; p0, the quasistationary fraction of the 
total population practicing social distancing; λ0, an 
eigenvalue characterizing the rate of movement be-
tween the mixing and protected subpopulations and 
establishing a timescale for population-level adoption 
of social distancing practices; and β, which character-
ized the rate of disease transmission in the absence of 
social distancing. The measurement model parameter 
fD represented the time-averaged fraction of new cas-
es detected. Inference of adjustable parameter values 
was based on a negative binomial likelihood function 
(Appendix 1 Equation 27). The dispersal parameter r 
of the likelihood was adjustable; its value was jointly 
inferred with those of t0, σ, p0, λ0, β, and fD.

The compartmental model had 3 adjustable pa-
rameters for each additional social distancing peri-
od after the initial. For 1 additional period of social 
distancing (n = 1), the additional adjustable param-
eters were τ1>σ, the onset time of second-phase so-
cial distancing; p1, the second-phase quasistationary 
setpoint; and λ1, which determined the timescale for 
transition from first- to second-phase social distancing 

behavior. For a second social distancing period, we 
replaced p0 with p1 and λ0 with λ1 at time t = τ1. If ad-
herence to effective social distancing practices began 
to relax at time t = τ1, then p1<p0.

Statistical Model for Noisy Case Reporting
We used a deterministic compartmental model to 
predict the expected number of new confirmed CO-
VID-19 cases reported daily. In other words, we as-
sumed that the number of new cases reported over 
a 1-day period was a random variable and that 
the expected value would follow a deterministic  

 
Table 1. Inferred values of parameters in models for forecasting 
regional epidemics of coronavirus disease, United States 
Parameter* Estimate† Definition 
t0 33 d Start of transmission 
 33 d Start of social distancing 
p0 0.87 Social distancing setpoint 
0 0.10/d Social distancing rate 
 2.0/d Disease transmission rate 
fD 0.12 Fraction of active cases 

reported 
r 12 Dispersal parameter of 

NB(r,p)‡ 
*t0, , p0, 0, and  are adjustable parameters of the compartmental model; 
fD is a parameter of the auxiliary measurement model; and r is a parameter 
for the associated statistical model for noise in case detection and 
reporting. 
†All estimates are region-specific and inference-time-dependent. 
Inferences were conducted daily. These findings reflect the maximum a 
posteriori estimates inferred for the New York City metropolitan statistical 
area using all confirmed coronavirus disease case count data available in 
the GitHub repository maintained by The New York Times newspaper (11) 
for January 21–June 21, 2020. Time t = 0 corresponds to midnight on 
January 21, 2020.  
‡The probability parameter of NB(r,p) is constrained (i.e., its reporting-
time-dependent value is determined by Appendix 1 Equation 26, 
https://wwwnc.cdc.gov/EID/article/27/3/20-3364-App1.pdf). 

 
 

 
Table 2. Estimates for the fixed parameters of compartmental 
model for forecasting regional epidemics of coronavirus disease, 
United States 
Parameter Estimate Source 
S0 19,216,182* US Census Bureau (13) 
I0 1 Assumption 
n 0† Assumption 
mb 0.1 Assumption 
E 1.1 Arons et al. (14) 
A 0.9 Nguyen et al. (15) 
kL 0.94/d Lauer et al. (12) 
kQ 0.0038/d Assumption 
jQ 0.4/d Assumption 
fA 0.44 (16,17) 
fH 0.054 Perez-Saez et al. (18) 
fR 0.79 Richardson et al. (19) 
cA 0.26/d Sakurai et al. (17) 
cI 0.12/d Wölfel et al. (20) 
cH 0.17/d Richardson et al. (19) 
*All estimates listed in this table are considered to apply to all regions of 
interest except for n, the number of distinct social distancing periods after 
an initial social distancing period, and S0, the region-specific initial number 
of susceptible persons. The value given here for S0 is the US Census 
Bureau estimated total population of the New York City metropolitan 
statistical area.  
†n = 0, unless stated otherwise. 
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trajectory. We further assumed that day-to-day 
fluctuations in the random variable were indepen-
dent and characterized by a negative binomial dis-
tribution, denoted as NB(r,p). We used NB(r,p) to 
model noise in reporting and case detection. The 
support of this distribution is the nonnegative inte-
gers, which is natural for populations. Furthermore, 
the shape of NB(r,p) is flexible enough to recapitu-
late an array of unimodal empirical distributions. 
With these assumptions, we obtained a likelihood 
function (Appendix 1 Equation 27) in the form of 
a product of probability mass functions of NB(r,p). 
Formulation of a likelihood is a prerequisite for 
standard Bayesian inference; however, some relat-
ed methods, such as approximate Bayesian compu-
tation, do not rely on a likelihood function.

Online Learning of Model Parameter Values  
through Bayesian Inference
We used Bayesian inference to identify adjustable 
model parameter values for each MSA of interest. In 
each inference, we assumed a uniform prior and used 
an adaptive Markov chain Monte Carlo algorithm 
(21) to generate samples of the posterior distribution 
for the adjustable parameters (Appendix 1).

The maximum a posteriori (MAP) estimate of a 
parameter is the value corresponding to the mode 
of its marginal posterior, where probability mass is 
highest. Because we assumed a uniform prior, our 
MAP estimates were maximum-likelihood estimates.

Forecasting with Quantification of Prediction  
Uncertainty: Bayesian Predictive Inference
In addition to inferring parameter values, we quanti-
fied uncertainty in predicted trajectories of daily case 
reports. We obtained a predictive inference of the ex-
pected number of new cases detected on a given day 
by parameterizing a model using a randomly-chosen 
parameter posterior sample generated in Markov 
chain Monte Carlo sampling. We then predicted the 
number of cases detected by adding a noise term, 
drawn from NB(r,p), where r is set at the randomly 
sampled value and p is set using an equation (Appen-
dix 1 Equation 26).

We used LSODA (22; SciPy, https://scipy.org) to 
numerically integrate the described ODEs and obtain 
a prediction of the compartmental model for any giv-
en (1-day) surveillance period and specified settings 
for parameter values (Appendix 1 Equations 1–17, 
23). The initial condition was defined by the inferred 
value of t0 (Table 1) and the fixed settings for S0 and I0 
(Tables 2, 3). We predicted the actual number of new 
cases detected by entering the predicted expected 
number of new cases into an equation (Appendix 1 
Equation 29).

The 95% credible interval (CrI) for the predicted 
number of new case reports on a given day is the cen-
tral part of the marginal predictive posterior captur-
ing 95% of the probability mass. This region is bound-
ed above by the 97.5th percentile and below by the 
2.5th percentile.

Results
The objective of our study was to detect notable new 
trends in daily COVID-19 incidence as early as pos-
sible. We achieved this goal by systematically and 
regularly updating mathematical models capturing 
historical trends in regional COVID-19 epidemics 
using Bayesian inference and making forecasts with 
Bayesian uncertainty quantification.
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Table 3. Description of the fixed parameters of the 
compartmental model for forecasting regional epidemics of 
coronavirus disease, United States 
Parameter Definition 
S0 Initial size of susceptible population* 
I0 Initial no. infected individuals† 
n No. prior social distancing periods (e.g., 0 or 1) 
mb Protective effect of social distancing‡ 
E Relative infectiousness of an exposed person 

without symptoms during the incubation period§ 
A Relative infectiousness of an asymptomatic 

person in the immune clearance phase of 
infection§ 

kL Rate constant for progression through each stage 
of the incubation period¶ 

kQ Rate constant for entry into quarantine for a 
person without symptoms 

jQ Rate constant for entry into quarantine for a 
person with mild symptoms 

fA Fraction of all cases that are asymptomatic 
fH Fraction of all cases of severe disease (including 

patients requiring hospitalization or isolation at 
home) 

fR Fraction of persons with severe disease who 
eventually recover 

cA Rate constant for recovery of asymptomatic 
persons in the immune clearance phase of 

infection 
cI Rate constant for recovery of symptomatic 

persons with mild disease or progression to 
severe disease# 

cH Rate constant for recovery of symptomatic 
persons with severe disease or progression to 

death** 
*Initial susceptible population within a given region is assumed to be the 
total regional population. 
†Assuming that there is initially a single infected, symptomatic person. 
‡This parameter defines the reduction in disease transmission caused by 
the protective effects of social distancing. 
§This parameter characterizes infectiousness relative to a symptomatic 
person with all other factors being equal (i.e., a symptomatic person 
exhibiting the same social distancing behavior). 
¶The incubation period is divided into 5 stages, each of equal duration on 
average. 
#In the model, after a mean waiting time of 1/cI, symptomatic persons with 
mild disease recover or progress to severe disease. 
**In the model, after a mean waiting time of 1/cH, symptomatic persons 
with severe disease recover or die. 
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Our analysis focused on the populations of US 
cities and their MSAs instead of regional populations 
within other political boundaries, such as those of US 
states. The boundaries of MSAs are based on social and 
economic interactions (10), which suggests that the 
population of an MSA is likely to be more uniformly 
affected by the COVID-19 pandemic than, for example, 
the population of a state. Accordingly, daily reports of 
new COVID-19 cases for the New York City MSA (Fig-
ure 2, panel A) are more temporally correlated than 
for the 3 states that make up the New York City MSA: 
New York (Figure 2, panel B), New Jersey (Figure 2, 
panel C), and Pennsylvania (Figure 2, panel D). Daily 
case counts for New Jersey resembled those for New 
York City because the 2 populations overlap consider-
ably: ≈74% of New Jersey’s population is part of the 
New York City MSA and ≈32% of the population of the 
New York City MSA is part of New Jersey (13).

For each of the 15 most populous US MSAs, we 
defined parameters for a compartmental model using 
MSA-specific surveillance data, namely aggregated 
county-level reports indicating the number of new 
confirmed COVID-19 cases within a given MSA each 
day. We made daily predictions by using Bayesian 
parameterization and forecasting with uncertainty 
quantification (UQ) for each of the 15 MSAs (Figure 
3). Predictions took the form of a predictive posterior 
distribution and varied because of the uncertainties 
in adjustable model parameter estimates, which were 
characterized quantitatively through Bayesian infer-
ence. For these inferences we used the complete time 
series of available daily new case counts for the re-
gion of interest.

We conducted predictive inferences for all 15 
MSAs of interest (Figure 4). We conditioned our 
predictions on the compartmental model with n = 0. 

Figure 2. Temporal correlations of fractional case counts of coronavirus disease in and around the New York City, New York, 
metropolitan statistical area, United States, March 1–June 13, 2020. The fractional case count for a county on a given date is defined 
as the reported number of cases on that date divided by the total reported number of cases in the county over the entire time period of 
interest. Panels show the fractional cast counts for: A) the 23 counties comprising the New York City metropolitan statistical area (Fano 
factor 0.0026); B) the 62 counties comprising New York state (Fano factor 0.021); C) the 21 counties comprising New Jersey (Fano 
factor 1.2); and D) the 67 counties comprising Pennsylvania (Fano factor 0.028). Within each plot, different colors indicate the data 
points from each distinct county. Purple–yellow gradient indicates alphabetical order of the counties. A smaller Fano factor indicates less 
county-to-county variability.



RESEARCH

These results demonstrate that, for the timeframe of 
interest, the compartmental model with n = 0 can re-
produce many of the empirical epidemic curves for 
the MSAs of interest, which vary in shape.

We also calculated predictive inferences for the 
New York City and Phoenix MSAs over time (Figure 
5; Appendix 2 Videos 1, 2, https://wwwnc.cdc.gov/
EID/article/27/3/20-3364-App2.pdf). These results 
illustrate that accurate short-term predictions are 
possible; however, continual updating of parameter 
estimates is required to maintain accuracy.

We found that the adjustable parameters of the 
compartmental model had identifiable values, mean-
ing that their marginal posteriors were unimodal 
(Figure 6). In the context of a deterministic model, 
the significance of identifiability is that, despite un-
certainties in parameter estimates, we can expect pre-
dictive inferences of daily new case reports to cluster 
around a central trajectory. The results are represen-
tative (Figure 6); we routinely recovered unimodal 
marginal posteriors. However, we do not have a 
mathematical proof of identifiability for our model.

Usually, when we forecasted with UQ, the em-
pirical new case count for the day immediately fol-
lowing our inference (+1), and often for each of sev-
eral additional days, fell within the 95% CrI of the 
predictive posterior. When the reported number of 
new cases falls outside the 95% CrI and above the 97.5 

percentile, we interpret this upward-trending rare 
event to have a probability of <0.025, assuming the 
model is both explanatory (i.e., consistent with his-
torical data) and predictive of the near future. If the 
model is predictive of the near future, the probabil-
ity of 2 consecutive rare events is far smaller, <0.001. 
Thus, consecutive upward-trending rare events, 
called upward-trending anomalies, can indicate that 
the model is not predictive. An anomaly suggests 
that the rate of COVID-19 transmission has increased 
beyond what can be explained by the model.

We did not observe upward-trending anoma-
lies for the New York City MSA (Figure 7, panel A). 
However, for the Phoenix MSA, we observed several 
anomalies that preceded rapid and sustained growth 
in the number of new cases reported per day in June 
(Figure 7, panel B).

We assumed these anomalies arose from behavior-
al changes. To explain them, we enabled the compart-
mental model to account for a second social distancing 
period by increasing the setting for n from 0 to 1. With 
this change, the number of adjustable parameters in-
creased from 7 to 10. One of the new parameters was 
τ1, the start time of the second social distancing period. 
The other new parameters, λ1 and p1, replaced λ0 and 
p0 at time t = τ1. The compartmental model with 2 so-
cial distancing periods better explained the data from 
Phoenix than the compartmental model with only 1  
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Figure 3. Illustration of Bayesian 
predictive inference for daily 
new case counts of coronavirus 
disease in the New York City, 
New York, metropolitan statistical 
area, United States, March 1–
June 21, 2020. Daily reports 
of new cases forecasted with 
rigorous uncertainty quantification 
through online Bayesian learning 
of model parameters. Each 
day considers all daily case-
reporting data available up to 
that point. We conducted Markov 
chain Monte Carlo sampling of 
the posterior distribution for a 
set of adjustable parameters. 
Subsampling of the posterior 
samples enabled the relevant 
model to generate trajectories of 
the epidemic curve that account 
for parametric and observation 
uncertainty. Crosses indicate 
observed daily case reports. The 
shaded region indicates the 95% 
credible interval for predictions of daily case reports. The color-coded bands within the shaded region indicate alternate credible intervals. 
The model was parametrized with uncertainty quantification data from January 21–June 21, 2020. The uncertainty bands/inferred model 
was used to make predictions for 14 days after the last observed data: the last prediction date was July 5, 2020.
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Figure 4. Bayesian predictive inferences for daily new case counts of coronavirus disease in the 15 most populous metropolitan 
statistical areas, United States, March 1–June 21, 2020. Predictions conditioned on the compartmental model with structure defined by n 
= 0, which accounts for a single initial period of social distancing. Inferences shown for the metropolitan statistical areas for the following 
cities: A) New York City, New York; B) Los Angeles, California; C) Chicago, Illinois; D) Dallas, Texas; E) Houston, Texas; F) Washington, 
DC; G) Miami, Florida; H) Philadelphia, Pennsylvania; I) Atlanta, Georgia; J) Phoenix, Arizona; K) Boston, Massachusetts; L) San 
Francisco, California; M) Riverside, California; N) Detroit, Michigan; and O) Seattle, Washington. Crosses indicate observed daily case 
reports. The shaded region indicates the 95% credible interval for predictions of daily case reports. The color-coded bands within the 
shaded region indicate alternate credible intervals. The model had parameters set by using uncertainty quantification by using data from 
January 21–June 21, 2020. The uncertainty bands/inferred model was used to make predictions for 14 days after the last observed data: 
the last prediction date was July 5, 2020.
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social distancing period (Figure 8, panels A and B). 
This conclusion is supported by the Akaike and Bayes-
ian information criteria values for the 2 scenarios (Ap-
pendix 1 Table 1). Although these criteria are crude 
model selection tools in the context of non-Gaussian 
posteriors, we decided that they were adequately dis-
criminatory. Each strongly indicates that the model 
with 2 social distancing periods better represented the 
data than the model with 1 social distancing period. 
Furthermore, the MAP estimate for p1 (≈0.38) was less 
than that for p0 (≈0.49) (Figure 8, panels C, D) and the 
marginal posteriors for these parameters were largely 
nonoverlapping (Figure 8, panel D). These findings 
suggest that the increase in COVID-19 cases in Phoenix 

can be explained by relaxation in social distancing 
practices, quantified by our estimates for p0 and p1. 
The MAP estimate of the start time of the second pe-
riod of social distancing corresponds to May 24, 2020 
(95% CrI May 20–28, 2020). Overall, 8 of the 9 observed 
anomalies occurred after this period, the first of which 
occurred on June 2, 2020 (Figure 8, panel B).

We hypothesized that a single event generating 
thousands of new infections, such as a mass gather-
ing, might prompt a new upward trend in COVID-19 
transmission. However, simulations for New York 
City and Phoenix did not support this hypothesis 
(Appendix 1 Figure 2). In each of these simulations, 
we moved a specified number of persons from the 
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Figure 5. Illustration of the 
need for online learning for 
modeling daily new case counts 
of coronavirus disease in the 
New York City, New York, and 
Phoenix, Arizona, metropolitan 
statistical areas, United States, 
2020. Predictions made over 
a series of progressively later 
dates as indicated for the New 
York City area (A, C, E, G, I) 
and the Phoenix area (B, D, F, 
H, J). Predictive inferences are 
data driven and conditioned on a 
compartmental model. Crosses 
indicate observed daily case 
reports. The shaded region 
indicates the 95% credible 
interval for predictions of daily 
case reports. The color-coded 
bands within the shaded region 
indicate alternate credible 
intervals. Predictions are accurate 
but only over a finite period of 
time into the future. New data 
must be considered as these data 
become available to maintain 
prediction accuracy. The model 
had parameters set by using 
uncertainty quantification using 
all data up to a terminal date, 
which differs in each panel. The 
uncertainty bands/inferred model 
was used to make predictions for 
14 days after the last observed 
data point. For the New York 
City area, visualization began on 
March 1, 2020; the terminal dates 
were A) March 20, C) March 30, 
E) April 3, G) April 19, and I) May 
19, 2020. For the Phoenix area, 
visualization began on March 11, 
2020; the terminal dates were B) 
April 9, D) April 19, F) May 29, H) 
June 8, and J) June 18, 2020.
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mixing susceptible population SM into the exposed 
population E1 at the indicated time, May 30, 2020. 
Each perturbation increased disease incidence but 
had minimal effect on the slope of the trajectory of 
new case detection.

In addition to Phoenix, 4 other MSAs had con-
temporaneous trends explainable by relaxation of 
social distancing (Appendix 1 Table 1, Figure 3). 
MAP estimates for τ1 indicate that the second social 
distancing period began on May 27, 2020 in Houston; 

April 19, 2020 in Miami; May 24, 2020 in Phoenix; 
June 12, 2020 in San Francisco; and June 7, 2020 in 
Seattle (Appendix 1 Figure 3). We detected upward-
trending anomalies for these 5 MSAs (Appendix 1 
Figure 4, panels A–D), but not for 3 of 4 other MSAs 
that had epidemic curves consistent with sustained 
social distancing (Appendix 1 Figure 4, panels E–H; 
Appendix 2 Videos 3–10). We assessed the overall 
prediction accuracy of the region-specific compart-
mental models (Appendix 1 Figure 5).

Figure 6. Matrix of 1- and 2-dimensional projections of the 7-dimensional posterior samples obtained for the adjustable parameters 
associated with the compartmental model (n = 0) for daily new case counts of coronavirus disease in the New York City, New York, 
metropolitan statistical area, United States, January 21–June 21, 2020. Plots of marginal posteriors (1-dimensional projections) are 
shown on the diagonal from top left to bottom right. Other plots are 2-dimensional projections indicating the correlations between 
parameter estimates. Brightness indicates higher probability density. A compact bright area indicates absence of or relatively low 
correlation. An extended, asymmetric bright area indicates relatively high correlation.
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Discussion
We found that online learning of model parameter 
values from real-time surveillance data is feasible 
for mathematical models of COVID-19 transmission. 
Furthermore, we found that predictive inference of 
the daily number of new cases reported is feasible 
for regional COVID-19 epidemics occurring in mul-
tiple US MSAs. We are continuing to perform daily 
forecasts and to disseminate the results (23,24). In-
ferences are computationally expensive and the cost 
increases as new data become available; thus, daily 
inferences using these methods might be impractical 
in some circumstances.

These predictive inferences can be used to iden-
tify harbingers of future growth in COVID-19 trans-
mission rates. We found that 2 consecutive upward-

trending rare events in which the number of new 
cases reported is above the upper limit of the 95% 
CrI of the predictive posterior might indicate poten-
tial for increased transmission during the following 
days to weeks. This feature might be especially pre-
dictive when anomalies are accompanied by increas-
ing prediction uncertainty, as seen in Phoenix (Fig-
ure 7, panel B).

We found that the June increase in transmission 
rate of COVID-19 in the Phoenix metropolitan area 
can be explained by a reduction in the percentage of 
the population adhering to effective social distanc-
ing practices from ≈49% to ≈38% (Figure 8, panel D). 
However, our study sheds no light on which social 
distancing practices are effective at slowing CO-
VID-19 transmission. We inferred that relaxation of 
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Figure 7. Rare events and anomalies in daily new case counts of coronavirus disease in (A) the New York City, New York metropolitan 
statistical area during April 5–June 4, 2020 and (B) Phoenix, Arizona, metropolitan statistical area during April 19–June 18, 2020, United 
States. Crosses indicate observed daily case reports. Orange line indicates 97.5% probability percentile; blue line indicates 2.5% 
probability percentile. Yellow arrows mark upward-trending rare events. Red arrows mark upward-trending anomalies.

Figure 8. Predictions of the 
compartmental model for daily 
new case counts of coronavirus 
disease in the Phoenix, Arizona, 
metropolitan statistical area, 
United States, January 21–June 
18, 2020. A) Model using 1 initial 
period of social distancing (n 
= 0). B) Model using an initial 
period of social distancing 
and a subsequent period of 
reduced adherence to social 
distancing practices (n = 1). 
C) The marginal posteriors for 
the social-distancing setpoint 
parameter p0 inferred in panel A. 
D) The marginal posteriors for 
the social-distancing parameters 
p0 and p1 inferred in panel B.
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social distancing measures began around May 24, 
2020 (Figure 8, panel B). Contemporaneous upward 
trends in the rate of COVID-19 transmission in the 
Houston, Miami, San Francisco, and Seattle MSAs 
can also be explained by relaxation of social distanc-
ing (Appendix 1 Table 1, Figure 3). These findings are 
qualitatively consistent with earlier studies indicating 
that social distancing is effective at slowing the trans-
mission of COVID-19 (7,8). These results also suggest 
that the future course of the pandemic is controllable, 
especially with accurate recognition of when stronger 
nonpharmaceutical interventions are needed to slow 
COVID-19 transmission.

One limitation of our study is that trend detec-
tion is data-driven, which means that a new trend 
cannot be detected until enough evidence has ac-
cumulated. Our analysis used reports of new cases, 
which reflect transmission dynamics of the past days 
to weeks rather than the current moment. Other types 
of surveillance data, such as assays of viral RNA in 
wastewater samples, also might improve situational 
awareness. Another limitation is that our inferences 
are based on a mathematical model associated with 
considerable structure and fixed parameter uncertain-
ties and simplifications. Among the simplifications is 
the replacement of certain time-varying parameters, 
such as those characterizing testing capacities, with 
constants, which are assumed to provide an adequate 
time-averaged characterization. In this study, we 
used a deterministic compartmental model. If disease 
prevalence decreases, a stochastic version of the mod-
el might be more appropriate for forecasting efforts. 
Although the model can reproduce historical data 
and make accurate short-term forecasts, its structure 
and fixed parameters are subject to revision as we 
learn more about COVID-19. Furthermore, the model 
will need to be revised to account for vaccination. Re-
sults from serologic studies and estimates of excess 
deaths should enable model improvements.

This article was preprinted at https://arxiv.org/
abs/2007.12523.
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