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The emergence of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has demonstrated the 

need for epidemiologic models in public health deci-
sion-making. Modeling has been critical to planning 
outbreak responses since at least the emergence of HIV 
40 years ago (1–3). However, the response to the coro-
navirus disease (COVID-19) pandemic has highlighted 
several challenges with incorporating modeling into 
public health decision-making.

The fast-moving operational timescales of public 
health policy are often at odds with the traditionally 
slower and iterative science of epidemiologic modeling. 
When models are effective, they catalyze policies that 
prevent their sometimes-dire predictions, thus making 
the initial predictions seem inaccurate. This feedback 
loop has heightened skepticism, resulting in high-pro-
fi le controversies around modeling results (4,5).

In the rush to provide evidence-based guid-
ance to policymakers, modeling experts were over-
whelmed with requests, leaving little time respond or 
to coordinate with broader efforts. Meanwhile, many 
groups unfamiliar with the nuances of how model-
ing has evolved through years of infectious disease 
modeling research were producing models for public 
policy that failed to refl ect state-of-the-art modeling 
science (6,7). This situation often resulted in confl ict-
ing evidence presented to decision-makers tasked 
with quickly setting up pandemic response plans. As 
the pandemic has progressed, substantial efforts have 
been made to help stakeholders interpret the results 
and assumptions of multiple, often contradictory, 
modeling efforts for policy decisions. These efforts 
include proposed frameworks for effectively incor-
porating multiple models into a structured decision-
making process (8) and efforts to assemble forecasts 
from multiple models to produce unifi ed predictions 
as is done for many other common forecasting sys-
tems, such as weather forecasts (9).

A major challenge in developing evidence-based 
models for policy is aligning models with policymak-
ers’ needs. Models that cannot rapidly provide action-
able results, although useful in a basic science context, 
will not be useful for guiding policy. Likewise, not all 
models are equally well-equipped to answer every 
question, and aligning the best model to address a 
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The	 coronavirus	 disease	pandemic	 has	 highlighted	 the	
key	 role	 epidemiologic	 models	 play	 in	 supporting	 pub-
lic	 health	 decision-making.	 In	 particular,	 these	 models	
provide	 estimates	 of	 outbreak	 potential	 when	 data	 are	
scarce	 and	 decision-making	 is	 critical	 and	 urgent.	 We	
document	the	integrated	modeling	response	used	in	the	
US	state	of	Utah	early	 in	 the	coronavirus	disease	pan-
demic,	which	brought	together	a	diverse	set	of	technical	
experts	and	public	health	and	healthcare	offi		cials	and	led	
to	an	evidence-based	response	to	the	pandemic.	We	de-
scribe	how	we	adapted	a	standard	epidemiologic	model;	
harmonized	 the	 outputs	 across	 modeling	 groups;	 and	
maintained	a	constant	dialogue	with	policymakers	at	mul-
tiple	 levels	 of	 government	 to	 produce	 timely,	 evidence-
based,	and	coordinated	public	health	recommendations	
and	interventions	during	the	fi	rst	wave	of	the	pandemic.	
This	framework	continues	to	support	the	state’s	response	
to	ongoing	outbreaks	and	can	be	applied	in	other	settings	
to	address	unique	public	health	challenges.
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given policy question is challenging, especially dur-
ing a rapidly evolving pandemic. This challenge is 
exacerbated by differing expectations between epide-
miologists and policymakers. Epidemiologists often 
seek to match model assumptions to reality and high-
light the resulting uncertainty, whereas policymakers 
seek a concrete basis for making and defending policy 
decisions and often need a single number to put the 
results into use (e.g., order a particular quantity of 
N95 masks). Developing strong relationships with 
policymakers is essential for clearly communicating 
this uncertainty.

As of June 22, 2020, the US state of Utah had a low 
attack rate (55 infections/10,000 population report-
ed statewide, compared with 70 infections/10,000 
population reported nationwide) and few deaths 
(158 deaths statewide, or 0.5 deaths/10,000 popula-
tion, compared with 3.7 deaths/10,000 population 
nationwide), all accomplished with less aggressive 
mandated social distancing than other states. Utah’s 
success might be attributable to its early adoption of 
an integrated control strategy that has relied heavily 
on testing and isolating case-patients, contact trac-
ing, and quarantining case-patient contacts (>300,000  

persons tested statewide [936 tests/10,000 popula-
tion] compared with 828 tests/10,000 population na-
tionally). The decision to take this course, its imple-
mentation, and evaluation were informed heavily 
by an integrated modeling approach that brought 
together a diverse set of technical experts and public 
health and healthcare officials. Given the limited data 
on COVID-19 at the time, our approach was helpful 
for all involved; however, without a counterfactual 
scenario, we cannot determine whether our efforts 
had the intended consequences. With this caveat, we 
present the approaches taken over 3 different phases 
and highlight key points in hopes the lessons learned 
can inform future modeling efforts (Figure 1).

Phase 1: Epidemiologic Model for 
Public Health Planning
Utah, like other state, local, and national govern-
ments, sought epidemiologic modeling estimates to 
inform their COVID-19 response. Utah public health 
decision-makers initially engaged with our group, In-
fectious Disease Dynamics, at the University of Utah 
to help prepare for and respond to COVID-19. To ad-
dress their questions, we adapted a metapopulation 
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Figure 1.	Schematic	of	the	modeling	process	used	as	a	decision	support	tool	for	coronavirus	disease,	Utah,	USA.	The	epidemiologic	
model	produces	outputs	of	disease	impact	and	key	health	outcomes	that	are	used	by	the	post–acute-care	model.	All	model	results	are	
incorporated	into	the	report,	which	is	generated	weekly	and	shared	with	policymakers	who	then	make	decisions	on	which	interventions	
to	implement.	Those	interventions	impact	the	reproductive	number,	which	is	then	used	as	an	input	to	the	epidemiologic	model.	The	color	
of	the	box	represents	the	time	input	was	added,	with	dark	blue	for	earliest	and	light	blue	for	most	recent.	Policymakers	and	interventions	
are	gray	to	indicate	that	although	they	are	a	critical	component	of	our	modeling	process,	they	are	external	to	our	inputs	to	the	process.	
Rt,	real-time	effective	reproduction	number.
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Susceptible-Exposed-Infectious-Recovered/Re-
moved modeling process to develop planning sce-
narios for the state (J.C. Lemaitre et al., unpub. data, 
https://doi.org/10.1101/2020.06.11.20127894). We 
projected infections, deaths, and health system needs 
under multiple nonpharmaceutical interventions 
(NPIs) being considered by decision-makers (Figure 
2). In particular, we compared the effects of compre-
hensive testing and isolation strategies on the lock-
down measures being implemented by other states 
(e.g., California). Although testing and isolation strat-
egies were not yet feasible in many states because of 
slow scale-up of testing capacity, Utah was well po-
sitioned to take such an approach. As of March 25, 
2020, a national diagnostic medicine laboratory locat-
ed in Salt Lake City had ample resources to rapidly 
develop and scale up COVID-19 testing capacity.

We compiled the model-based projections and 
comparison of NPIs and rapidly shared a report on 
March 23, 2020, with key leadership at the Univer-
sity of Utah Health, the Utah Department of Health 
(UDOH), ARUP Laboratories (Salt Lake City), the 
Governor’s Office of Management and Budget, and 
Intermountain Healthcare, the largest healthcare sys-
tem in Utah. These stakeholders encompassed the key 
health decision-makers in the state, including those re-
sponsible for ≈60% of the state’s hospital market share.

On March 24, university leadership coordinated a 
meeting between scientists and policymakers to discuss 
this initial report. The goal of the meeting was to review 
model projections, compare the different NPI scenario 

estimates, and discuss the best paths forward for the 
state. The resulting consensus was that the state should 
strive to rapidly achieve levels of per-capita testing of 
symptomatic persons similar to those seen in South Ko-
rea, a goal that was achieved in Utah by March 25, 2020. 
After this meeting, we maintained open lines of com-
munication with health experts and policymakers, so-
liciting insight into new operational questions (further 
discussed in phase 3) and distributing weekly scenario-
based projections of probable outcomes under different 
NPIs over the course of the local outbreak.

Phase 2: Establishing Local Model Consensus
The University of Utah model was not the only model 
used to estimate COVID-19 impact in Utah. In addi-
tion to national-level models that included projections 
for Utah (e.g., projections described in University of 
Washington Institute for Health Metrics and Evalu-
ation [IHME] COVID-19 Health Service Utilization 
Forecasting Team et al., unpub. data, https://doi.org
/10.1101/2020.04.21.20074732), 3 other groups within 
the state were developing models of COVID-19 to in-
form policy. Intermountain extended an existing Sus-
ceptible-Infected-Recovered (SIR) model to project ex-
pected burden on their healthcare facilities statewide, 
later switching to a timeseries model for short-term 
forecasting. UDOH used an SIR model, and another 
group constructed an operational model of COV-
ID-19 that projected forward on the basis of current 
trends, thereby implicitly projecting the effect of cur-
rent NPIs at the state level (group 1 in Figure 3), later 
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Figure 2.	Example	
epidemiologic	model	output	
presented	to	stakeholders	as	
part	of	decision	support	tool	for	
coronavirus	disease,	Utah,	USA.	
Model	results	compare	daily	
incidence	across	3	planning	
scenarios:	no	interventions,	
social	distancing	only,	and	
comprehensive	testing	only.	
Bold	lines	represent	the	median	
daily	incidence	(cases/100,000	
population)	calculated	from	
1,000	simulations,	whereas	the	
lighter	lines	represent	15	random	
example	simulations.
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moving to a timeseries model for short-term forecast-
ing. The different modeling approaches, which often 
yielded qualitatively different results (Figure 3), were 
creating uncertainty about the relative strengths and 
weaknesses of policy options.

To improve consistency in model outputs and 
communication of results across the 3 modeling 
groups, we arranged weekly consensus modeling 
meetings starting on April 8, 2020, that included rep-
resentatives from all groups and other stakeholders 
(e.g., UDOH). Those meetings covered evidence-
based model parameters, key modeling scenarios 
(e.g., determining which NPIs to model), data qual-
ity, and appropriate interpretation of high-profile 
models from outside the state. At these meetings, 
participants learned that the University of Utah was 
using a Susceptible-Exposed-Infectious-Recovered/
Removed model (later changing to a timeseries mod-
el for short-term forecasting) with a latent period of 5 
days and an average duration of infection of 6 days, 
whereas Intermountain was using an SIR model with 
an average duration of infection of 6 days. Likewise, 
the University of Utah group assumed that 10% of 
all infections were in hospitalized case-patients and 
the duration of hospitalization was on average 11.5 
days, whereas Intermountain assumed that 2.5% of 
infections were in hospitalized case-patients and the 
duration of hospitalization was on average 7 days. 
Further, the University of Utah assumed that 15% 
of hospitalized patients required a stay in the in-
tensive-care unit (ICU), whereas Intermountain as-
sumed that 38% of hospitalized patients required an 
ICU stay. The consensus modeling group also served 

as a forum for informal peer review of models from 
each group. The consensus modeling meetings pro-
duced weekly joint reports reflecting the collective 
research, modeling, and operational efforts of the 
group, standardizing the outputs (Figure 3) to im-
prove communication. Central to these reports was 
presenting results from all 3 groups in a format that 
could enable comparisons, guide public health deci-
sion-makers on the strengths and limitations of each 
model type, and indicate which models were more 
appropriate for informing certain decisions, such as 
models that aimed to forecast weekly incidence com-
pared with those aiming to provide big-picture epi-
demiologic dynamics. To improve communication, 
these reports began presenting a consensus model, 
which was calculated as the average of each of the 
individual group models over the forecast period.

Phase 3: Iterative Modeling and 
Ongoing Assessment
As the epidemic evolved, new operational questions 
required new approaches. To address these new 
questions, we contacted collaborators at the Universi-
ty of Utah to develop new decision support tools that 
expanded the modeling process. In particular, assess-
ing the efficacy of key interventions in a local context 
became paramount. Doing so required an increased 
focus on ensuring the model’s assumptions matched 
the current epidemic situation.

To characterize the effectiveness of the NPIs that 
were implemented in Utah in March 2020, we esti-
mated the time varying local reproduction number, 
Rt (the real-time average number of secondary infec-
tions from a single infected person), with assistance 
from the Study Design and Biostatistics Center at 
the University of Utah (Y. Zhang et al., unpub. data, 
https://doi.org/10.1101/2020.05.08.20095703). Esti-
mates of Rt became a weekly input into the transmis-
sion model, and these projections served as a base-
line for comparing current and possible interventions 
(Figure 4, panel A). As the epidemic progressed, local 
outbreaks sparked concerns of substantial spatial het-
erogeneity in the impact of interventions across the 
state. Hence, we began estimating Rt at the county 
level and capturing this heterogeneity in our wider 
modeling efforts, as well as including these estimates 
directly in the report beginning April 13, 2020.

As COVID-19 patients were discharged, pub-
lic health officials learned that the pandemic would 
have downstream effects on post–acute-care facilities. 
These case-patients often require further supportive 
care after hospitalization; however, they might still 
be infectious and pose a risk to other long-term care 
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Figure 3.	Example	of	a	consensus	model	figure	from	a	decision	
support	tool	for	coronavirus	disease,	Utah,	USA.	Model	results	
compare	the	number	of	new	reported	infections	(daily)	across	the	
4	modeling	groups	presented	to	Utah	stakeholders	on	September	
9,	2020.	Light	gray	line	represents	reported	infections,	black	
line	represents	the	consensus	model	(i.e.,	the	average	of	the	4	
individual	group	models),	green	line	represents	the	results	from	
modeling	group	1,	yellow	line	represents	the	results	from	the	
UDOH,	blue	line	represents	the	results	from	the	Intermountain	
Healthcare	model,	and	red	line	represents	the	results	from	the	
University	of	Utah	model.	UDOH,	Utah	Department	of	Health.
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facility residents and staff (10). One week after we 
shared model outputs with state decision-makers, the 
state opened a dedicated long-term care facility to ac-
commodate COVID-19 patients. To help calibrate the 
appropriate capacity of the center and anticipate the 
need for expansion, we collaborated with a team of 
hospitalists (general internists who care for hospital-
ized patients) to extend the process with a module 
aimed at projecting post–acute-care flows. This mod-
ule explicitly models the discharge of case-patients 

directly to home, to home healthcare, to skilled nurs-
ing facilities, or to hospice (Figure 4, panel B), and 
was first included in reports on May 18, 2020 (M. Ma-
loney et al., unpub. data, https://doi.org/10.1101/20
20.06.12.20129551).

Phase 4: Ongoing Activities and Future Directions
Although we have devised a process for responding 
to the ongoing pandemic, the situation continues to 
evolve. What appears to be effective now might not 
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Figure 4.	Sample	model	outputs	from	additional	model	components	for	a	decision	support	tool	for	coronavirus	disease,	Utah,	USA.	Solid	
lines	indicate	the	average	daily	occupancy,	and	shaded	areas	represent	95%	CIs.	A,	B)	Estimates	of	Rt	for	the	entire	state	of	Utah	(A)	
and	for	4	counties	(B).	The	dashed	blue	line	at	the	end	of	each	time	course	represents	the	period	within	1	serial	interval	from	the	end	of	
the	available	data,	where	estimates	of	Rt	are	not	accurate;	dashed	black	line	depicts	Rt	=	1,	below	which	the	disease	will	disappear	and	
above	which	the	disease	will	spread.	C)	Post–acute-care	occupancy	for	each	of	3	care	types:	home	healthcare,	hospice	care,	and	skilled	
nursing	facility.	Rt,	real-time	effective	reproduction	number.	
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continue to be fruitful as the outbreak progresses. 
Likewise, the questions that have arisen thus far rep-
resent just a small sample of the potential hurdles 
that might be faced during a dynamic situation. For 
instance, we are already working to integrate a health 
economic model with the post–acute-care compo-
nents to help guide the development and expansion 
of additional patient-care resources after hospitaliza-
tion. In addition, we are beginning to develop collab-
orations across states with similar experiences, priori-
ties, and concerns to learn from their experiences and 
further improve pandemic response. Although some 
future directions are clear, others will emerge as the 
pandemic evolves. As subsequent outbreaks occur, 
the response continues to leverage these developed 
collaborations to provide the state with evidence-
based guidance for pandemic response.

Discussion
We identify 3 key points from the process so far. The 
first is establishing processes for bidirectional com-
munication among stakeholders, the second is pro-
moting communication and consensus among model-
ing teams, and the third is inviting multidisciplinary 
perspectives to inform modeling.

First, ongoing iterative communication with 
public health officials, policymakers, and other 
stakeholders is key for developing an understand-
ing of policymakers’ needs and gaining their trust, 
thereby creating a bidirectional relationship with 
effective communication. Through the process of 
producing and sharing weekly scenario-based pro-
jections of outcomes with policymakers and health 
experts, we demonstrated that we incorporated their 
feedback into the model, offered new interventions 
and evaluation criteria to consider, and provided 
support in interpreting the projections. Regular, 
open communication between stakeholders and 
modelers also fostered an environment that facili-
tated conversation between modeling groups and 
spurred new modeling developments.

The second key point is that debate and discus-
sion of results between modeling groups increased 
confidence in model results and overall interpret-
ability by policymakers. Before Utah developed 
its own models, several high-profile, out-of-state 
models produced unrealistic projections because 
they failed to account for the local context. For in-
stance, the IHME model predicted hospital capacity 
would be exceeded in early April, much earlier than 
was observed, probably a result of drawing paral-
lels with other COVID-19 epidemics based on little 
evidence and failing to incorporate important con-

textual details (IHME COVID-19 Health Service Uti-
lization Forecasting Team et al.). The guidance of lo-
cal models produced a more measured approach to 
outbreak control (i.e., a rapid scale-up of state test-
ing and isolation), compared with a strict lockdown, 
which would have been justified to prevent the dire 
hospital overflow predicted by other models. The 
interagency collaboration developed through the 
consensus group helped to draw on diverse per-
spectives, account for local context, and boost con-
fidence in model projections statewide. Importantly, 
comparing multiple models helped refute the false 
narrative that differing models are necessarily in 
competition. This comparison helped to highlight to 
both the consumers of the results and the individual 
modeling teams that each model is a tool optimized 
for addressing a particular type of policy question 
by making certain assumptions.

Finally, modeling approaches need to be adapt-
able and multidisciplinary to address changing pol-
icy questions. By using a solution-oriented modular 
approach, we were able to adjust and expand the ini-
tial epidemiologic model to assess how using an NPI 
affected the number of cases, the number of hospital 
or ICU beds needed in the short term, and the num-
ber of skilled nursing facility beds needed on a longer 
time scale, as well as, ultimately, the effectiveness of 
the NPIs used. An additional benefit of incorporating 
multiple modeling components was the differing per-
spectives in evaluating model assumptions and inter-
preting outputs gained by collaborating with experts 
from a range of disciplines. This collaboration be-
tween epidemiologists, health economists, biostatis-
ticians, and hospitalists yielded perspectives beyond 
any single discipline and enabled groups to focus on 
modeling within their areas of expertise. Each model 
component was developed as a separate module, but 
results were shared regularly to solicit feedback, de-
termine how they would inform the other modules, 
and formulate a consistent message for stakeholders.

In conclusion, the framework we have described 
can be applied in other settings to address additional 
public health challenges. This approach is best used 
at the level that decisions are being made and poli-
cies put into place. Each jurisdiction, whether at the 
city, county, state, or regional level, has its own par-
ticular conditions that affect disease transmission and 
number of cases (e.g., population density and de-
mographics), and which intervention and treatment 
options are feasible (e.g., local laboratory capacity to 
scale up testing). As a result, modeling approaches 
for the same public health threat are bound to vary. 
An interdisciplinary modeling hub with university-
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level support for these kinds of cross-cutting collabo-
rations, such as the one we created, would enable the 
kind of inclusive, rigorous exchange that can yield 
valid models and estimates that multiple modeling 
groups can support. By enabling sharing of modeling 
approaches and sustaining dialogue focused on poli-
cymakers’ questions, the forum would help modelers 
propose relevant and operationalizable scenarios that 
will probably resonate with policymakers and result 
in greater uptake. Another strategy would be to apply 
this multidisciplinary approach at the national level; 
however, a continuous dialogue between modelers, 
experts on the varied local conditions, and local poli-
ticians would be integral for the success of a national-
level response.
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