Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo hemorrhagic fever virus (CCHFV) (1), is a widely distributed arboviral disease. Human CCHF cases have been reported in >30 countries in Africa, the Middle East, Asia, and southeastern Europe (2). However, clinical cases or seroprevalence studies for CCHFV have not been reported in Myanmar, likely because active surveillance in humans or animals has not been established (3).

Hyalomma ticks, 1 of several CCHFV tick family hosts, are considered the primary vector transmitting CCHFV to humans (4). Hyalomma tick distribution extends into Myanmar (5), and CCHF has been reported in the neighboring countries of China and India (6,7). Expansion of CCHF from countries with known virus circulation to neighboring countries could occur through introduction of infected ticks, human CCHF cases, or movement of animals (8). Climate change also is expected to influence the distribution of Hyalomma ticks and CCHFV infections (9), increasing the likelihood of disease expansion.

Human CCHFV infections can occur through contact with an infected tick or with blood or tissues from infected humans or animals. People living or working closely with livestock or who have heavy exposure to ticks are at increased risk for CCHFV infection (10,11). Limited investigations have been performed to identify human exposure to CCHFV caused by wild animal contact, despite serologic evidence for exposure to CCHFV in numerous vertebrate species, including birds (Galiformes and Passeriformes), wild hoof stock (Artiodactyla, Cetartiodactyla, and Perissodactyla), carnivores (Carnivora), bats (Chiroptera), hedgehogs (Erinaceomorpha), rabbits and hares (Lagomorpha), elephants (Proboscidea), rodents (Rodentia), and turtles (Testudinata) (12).

CCHF has been designated by the World Health Organization as 1 of 10 high-priority emerging infectious diseases (https://www.who.int/emergencies/diseases/2018prioritization-report.pdf). The designation was based on CCHF’s epidemic and emergence potential, a high case-fatality rate of up to 80% depending on healthcare infrastructure and CCHFV genotype, and a lack of approved medical countermeasures for CCHF (14). Most initial reports of CCHF cases in individual countries have been preceded by epidemiologic surveys that provided evidence of local CCHFV circulation. Our goal was to conduct

Seroepidemiologic Survey of Crimean-Congo Hemorrhagic Fever Virus in Logging Communities, Myanmar

Tierra Smiley Evans, Theingi Win Myat, Nang Sarm Hom, Keersten Michelle Ricks, Min Thein Maw, Zaw Min Oo, Aung Than Toe, Nyein Thu Aung, Pyaephyo Aung, Tin Htun Aung, Paul Kuehnert, Kyaw Zin Thant, Ye Tun Win, Wai Zin Thine, Nicole Rae Gardner, Randal Joseph Schoepp, Christine Kreuder Johnson,1 Hlaing Myat Thu1

Author affiliations: University of California, Davis, Davis, California, USA (T. Smiley Evans, A.T. Toe, N.T. Aung, N.R. Gardner, C.K. Johnson); Department of Medical Research, Yangon, Myanmar (T.W. Myat, N.S. Hom, H.M. Thu); US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA (K.M. Ricks, P. Kuehnert, R.J. Schoepp); Livestock Breeding and Veterinary Department, Yangon (M.T. Maw, Y.T. Win, W.Z. Thein); Myanmar Timber Enterprise, Yangon (Z.M. Oo); Nature Conservation Society Myanmar, Yangon (P. Aung, T.H. Aung); Myanmar Academy of Medical Science, Yangon (K.Z. Thant)

DOI: https://doi.org/10.3201/eid2706.203223

1These senior authors contributed equally to this article.
targeted CCHFV surveillance of Myanmar logging communities, which contain an occupational group with expected high exposure to ticks, domestic livestock, and wild animals.

The Study

Myanmar uses a traditional method of elephant logging for timber harvest. Consequently, Myanmar has a large network of communities in which loggers live together in temporary villages with their families and occasionally migrant laborers. We collected data from 102 healthy persons from 5 elephant logging communities in and near the Yenwe Forest Reserve, a protected area in central Myanmar, during June 2016–August 2018. Most (57/102) participants, including persons from forest management, logging crews, and elephant caretakers, worked in the protected area and were exposed to forested areas and vectors associated with CCHFV (Table 1). Participants were 17–67 years of age and the median age was 32.5 years. We collected venous blood samples and quantitative medical and behavioral questionnaires from each participant (Appendix, https://wwwnc.cdc.gov/EID/article/27/6/20-3223-App1.pdf).

We used a bead-based MagPix (Luminex Corporation, https://www.luminexcorp.com) assay platform, developed at the US Army Medical Research Institute of Infectious Diseases, to detect specific IgG reactivity against the nucleoprotein of CCHFV. We used molecular detection of conserved regions of the small, medium, and large segments of bunyavirus to detect CCHFV viremia with conventional PCR (Appendix).

We identified previous CCHFV exposure among study participants, but we did not detect any active infections. Study participants did not exhibit any signs of hemorrhagic fever, and none reported having previously suffered symptoms of hemorrhagic-like illnesses. All participants tested negative for bunyaviruses by consensus PCR. Among study participants, 9.8% (10/102) were seropositive for CCHFV by MagPix IgG assay. Samples categorized as positive ranged from 1,124–8,911 mean fold increase (MFI) and a signal-to-noise ratio (S/N) of 33.8–207.8. Negative samples had an MFI of 44–854 and 1–19.9 S/N. Persons 31–40 years of age were significantly more likely to be seropositive for CCHFV (p = 0.05) compared with other age groups. We noted no statistically significant associations between specific occupations and CCHFV exposure (Table 1).

Persons who reported handling live or recently slaughtered primates (age-adjusted odds ratio $OR_{age\ adjusted} = 5.53; p = 0.020$) or wild carnivores ($OR_{age\ adjusted} = 1.3; p = 0.004$) in their lifetimes were more likely to have been exposed to CCHFV (Table 2). Handling primates was significantly correlated with handling carnivores (Pearson’s correlation = 0.6; p<0.001). Therefore, we used independent multivariable logistic regression models to adjust for age while assessing the association of CCHFV seropositivity for these 2 factors. More male than female persons reported

Table 1. Crimean-Congo hemorrhagic fever virus immunoglobulin G seroprevalence by demographic characteristic and occupation among forest logging camp communities, Myanmar

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. positive</th>
<th>No. negative</th>
<th>Period prevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>6</td>
<td>56</td>
<td>0.11 (0.05–0.2)</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>36</td>
<td>0.11 (0.04–0.23)</td>
</tr>
<tr>
<td>Age group, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11–20</td>
<td>0</td>
<td>11</td>
<td>0 (0–0.26)</td>
</tr>
<tr>
<td>21–30</td>
<td>3</td>
<td>32</td>
<td>0.09 (0.03–0.22)</td>
</tr>
<tr>
<td>31–40</td>
<td>5</td>
<td>19</td>
<td>0.21 (0.09–0.40)</td>
</tr>
<tr>
<td>41–50</td>
<td>2</td>
<td>13</td>
<td>0.15 (0.04–0.38)</td>
</tr>
<tr>
<td>51–60</td>
<td>0</td>
<td>15</td>
<td>0 (0–0.20)</td>
</tr>
<tr>
<td>61–70</td>
<td>0</td>
<td>2</td>
<td>0 (0–0.66)</td>
</tr>
<tr>
<td>Primary occupation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extractive industries</td>
<td>0</td>
<td>6</td>
<td>0 (0–0.39)</td>
</tr>
<tr>
<td>Crop production</td>
<td>0</td>
<td>2</td>
<td>0 (0–0.66)</td>
</tr>
<tr>
<td>Livestock farmer</td>
<td>0</td>
<td>1</td>
<td>0 (0–0.79)</td>
</tr>
<tr>
<td>Protected area worker, forest ranger</td>
<td>6</td>
<td>51</td>
<td>0.11 (0.05–0.21)</td>
</tr>
<tr>
<td>Housewife</td>
<td>1</td>
<td>2</td>
<td>0.33 (0.06–0.79)</td>
</tr>
<tr>
<td>Teacher</td>
<td>0</td>
<td>2</td>
<td>0 (0–0.66)</td>
</tr>
<tr>
<td>Migrant laborer</td>
<td>0</td>
<td>5</td>
<td>0 (0–0.43)</td>
</tr>
<tr>
<td>Hunter</td>
<td>1</td>
<td>7</td>
<td>0.11 (0.02–0.43)</td>
</tr>
<tr>
<td>Dependent</td>
<td>3</td>
<td>27</td>
<td>0.09 (0.03–0.24)</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>92</td>
<td>0.11 (0.05–0.17)</td>
</tr>
</tbody>
</table>

*Persons were asked to report their primary occupations but some engaged in additional activities, outside of their primary occupation. For example, persons who did not identify as being a hunter as their primary occupation may have reported hunting.
handling primates (20 male vs. 3 female persons) and carnivores (9 male vs. 3 female persons) and their ages ranged from 19–60 years. Handling primates or carnivores (9 male vs. 3 female persons) and their exposure to CCHFV in this community. We evaluated occupations associated with increased forest contact, and thus tick habitat, such as resource extraction, protected area worker (forest ranger), or hunter, as a combined variable, but we found no statistically significant association between occupation and CCHFV exposure.

Contact with domestic animals also was not the likely route of CCHFV exposure in this community. Study participants were not frequently exposed to ruminants, the domestic animal group most reported as associated with CCHFV exposure in endemic countries. Participants were more likely to report contact with pigs or poultry, but these animals have not been identified as amplifying hosts for CCHFV. Contact with live or dead domestic animals of any kind was not associated with CCHFV exposure (Table 2).

Nonhuman primates have not been implicated as natural reservoir hosts or sources of human CCHFV infection. However, rhesus macaques (Macaca mulatta) and long-tailed macaques (M. fascicularis), which

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Exposed no. persons seropositive/no. tested (%)</th>
<th>Unexposed no. persons seropositive/no. tested (%)</th>
<th>Bivariate model OR p value</th>
<th>Multivariable model OR p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunted wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ungulate</td>
<td>2/27 (7.4)</td>
<td>8/75 (10.7)</td>
<td>0.67 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Bat</td>
<td>0/1 (0.0)</td>
<td>10/101 (9.9)</td>
<td>2.9† 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Rodent</td>
<td>0/1 (0.0)</td>
<td>10/101 (9.9)</td>
<td>2.9† 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Primate</td>
<td>2/16 (12.5)</td>
<td>8/86 (9.3)</td>
<td>1.39 0.66</td>
<td>NC NC</td>
</tr>
<tr>
<td>Pangolin</td>
<td>2/9 (22.2)</td>
<td>8/93 (8.6)</td>
<td>2.99 0.21</td>
<td>NC NC</td>
</tr>
<tr>
<td>Carnivore</td>
<td>1/9 (11.1)</td>
<td>9/93 (9.7)</td>
<td>1.16 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Any wild animal</td>
<td>4/51 (7.8)</td>
<td>6/51 (11.8)</td>
<td>0.64 0.74</td>
<td>NC NC</td>
</tr>
<tr>
<td>Handled wildlife found dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ungulate</td>
<td>3/32 (9.4)</td>
<td>7/70 (10.0)</td>
<td>0.93 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Bat</td>
<td>1/3 (33.3)</td>
<td>9/99 (9.1)</td>
<td>4.86 0.27</td>
<td>NC NC</td>
</tr>
<tr>
<td>Rodent</td>
<td>1/4 (25.0)</td>
<td>9/98 (9.2)</td>
<td>3.24 0.34</td>
<td>NC NC</td>
</tr>
<tr>
<td>Primate</td>
<td>4/19 (21.1)</td>
<td>6/83 (7.2)</td>
<td>3.37 0.09</td>
<td>NC NC</td>
</tr>
<tr>
<td>Pangolin</td>
<td>1/6 (16.7)</td>
<td>9/96 (9.4)</td>
<td>1.92 0.47</td>
<td>NC NC</td>
</tr>
<tr>
<td>Carnivore</td>
<td>1/10 (10.0)</td>
<td>9/92 (9.8)</td>
<td>1.02 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Any wild animal</td>
<td>8/76 (10.5)</td>
<td>2/26 (7.7)</td>
<td>1.41 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Handled recently slaughtered or live wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ungulate</td>
<td>4/26 (15.4)</td>
<td>6/76 (7.9)</td>
<td>2.1 0.27</td>
<td>NC NC</td>
</tr>
<tr>
<td>Bat</td>
<td>1/3 (33.3)</td>
<td>9/99 (9.1)</td>
<td>4.86 0.27</td>
<td>NC NC</td>
</tr>
<tr>
<td>Rodent</td>
<td>1/5 (20.0)</td>
<td>9/97 (9.3)</td>
<td>2.42 0.41</td>
<td>NC NC</td>
</tr>
<tr>
<td>Primate</td>
<td>5/23 (21.7)</td>
<td>5/79 (6.3)</td>
<td>4.04 0.04</td>
<td>5.53* 0.020</td>
</tr>
<tr>
<td>Pangolin</td>
<td>2/10 (20.0)</td>
<td>8/92 (8.7)</td>
<td>2.59 0.25</td>
<td>NC NC</td>
</tr>
<tr>
<td>Carnivore</td>
<td>4/12 (33.3)</td>
<td>6/90 (6.7)</td>
<td>6.78 0.02</td>
<td>1.3† 0.004</td>
</tr>
<tr>
<td>Any wild animal</td>
<td>8/76 (10.5)</td>
<td>2/26 (7.7)</td>
<td>1.41 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Handled live domestic animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats</td>
<td>0/6 (0.0)</td>
<td>10/96 (10.4)</td>
<td>0.63† 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Pigs</td>
<td>3/23 (13.0)</td>
<td>7/79 (9.9)</td>
<td>1.54 0.69</td>
<td>NC NC</td>
</tr>
<tr>
<td>Poultry</td>
<td>6/57 (10.5)</td>
<td>4/45 (8.9)</td>
<td>1.20 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Cattle</td>
<td>1/8 (12.5)</td>
<td>9/94 (9.6)</td>
<td>1.34 0.58</td>
<td>NC NC</td>
</tr>
<tr>
<td>Elephant</td>
<td>5/43 (11.6)</td>
<td>5/59 (8.5)</td>
<td>1.42 0.74</td>
<td>NC NC</td>
</tr>
<tr>
<td>Any domestic animal</td>
<td>7/60 (11.7)</td>
<td>3/42 (7.1)</td>
<td>1.71 0.52</td>
<td>NC NC</td>
</tr>
<tr>
<td>Slaughtered domestic animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats</td>
<td>0/0 (0.0)</td>
<td>10/102 (9.8)</td>
<td>NC NC NC NC</td>
<td></td>
</tr>
<tr>
<td>Pigs</td>
<td>1/3 (33.3)</td>
<td>9/99 (9.1)</td>
<td>4.86 0.27</td>
<td>NC NC</td>
</tr>
<tr>
<td>Poultry</td>
<td>3/18 (16.7)</td>
<td>7/84 (8.3)</td>
<td>2.18 0.38</td>
<td>NC NC</td>
</tr>
<tr>
<td>Cattle</td>
<td>0/1 (0.0)</td>
<td>10/101 (9.9)</td>
<td>2.9† 1.0</td>
<td>NC NC</td>
</tr>
<tr>
<td>Any domestic animal</td>
<td>9/71 (12.7)</td>
<td>1/31 (3.2)</td>
<td>4.31 0.28</td>
<td>NC NC</td>
</tr>
</tbody>
</table>

*NC, not calculated; OR, odds ratio.
†Sample odds ratio calculated using unconditional maximum likelihood estimate method.
‡Evaluated in separate multivariable models, adjusting for age.
range throughout Myanmar, have been infected with CCHFV in laboratory settings. Rhesus macaques develop viremia without clinical signs, but long-tailed macaques develop signs of clinical illness and viremia similar to disease progression in humans (15). Contact with blood or other bodily fluids, including saliva, urine, or feces, during a period of viremia in macaques could lead to human infection. Similarly, wild carnivores have not been implicated as natural reservoir hosts for CCHFV, but red foxes (Vulpes vulpes), which are thought to range in Myanmar, and Pallas’s cats (Otocolobus manul), which range in central Asia, have demonstrated CCHFV seropositivity and could serve as sources of human infection, particularly through bushmeat hunting, which exposes persons to animal blood and body fluids.

Conclusions

Our findings indicate that CCHFV is circulating in Myanmar with human infections that are either mildly symptomatic or occurring in populations that fall outside of existing surveillance systems. Although exposure to domestic animal amplifying hosts is the most commonly reported exposure type for human CCHFV infections in endemic countries, our findings show that persons with close contact with wild animal reservoir hosts, especially blood and body fluids of nonhuman primates and carnivores, also are at risk for CCHFV infection. Surveillance of at-risk populations in Myanmar should be expanded to better prepare for potential future outbreaks of CCHF.

Acknowledgments

We thank the Department of Medical Research, the Myanmar Timber Enterprise, the Livestock Breeding and Veterinary Department, and the Forest Department of the Republic of the Union of Myanmar for their support and facilitation of this research. We thank Than Toe, Than Swe, Khin Maung Win, Tin Tin Myaing, Cynthie Tin Oo, and Daniel Fishbein for their guidance on working in Myanmar.

Research reported in this publication was supported by the Fogarty International Center of the National Institutes of Health under grant no. K01TW010279. C.J. and N.G. were supported by the United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT project (cooperative agreement no. GHN-A-OO-09-00010-00). Laboratory work was funded in part by the Global Emerging Infections Surveillance (GEIS) Section of the Armed Forces Health Surveillance Branch (AFHSB) research plans (ProMIS P0141_19_RD and P0129_20_RD) through USAMRIID.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, USAID, or the US Army.

About the Author

Dr. Smiley Evans is a research epidemiologist at the One Health Institute, University of California, Davis, California, USA. Her research focuses on disease transmission dynamics between humans and wildlife and the impact of biodiversity on disease emergence.

References

Crimean-Congo Hemorrhagic Fever Virus, Myanmar

Address for Correspondence: Tierra Smiley Evans, 1089 Veterinary Medicine Dr, University of California, Davis, CA 95616, USA; email: tsmevans@ucdavis.edu

January 2021

Waterborne Infections

- Impact of Human Papillomavirus Vaccination, Rwanda and Bhutan
- Aspergillosis Complicating Severe Coronavirus Disease
- Rising Ethnic Inequalities in Acute Rheumatic Fever and Rheumatic Heart Disease, New Zealand, 2000–2018
- Differential Yellow Fever Susceptibility in New World Nonhuman Primates, Comparison with Humans, and Implications for Surveillance
- Comparative Omics Analysis of Historic and Recent Isolates of Bordetella pertussis and Effects of Genome Rearrangements on Evolution
- Hospitalization for Invasive Pneumococcal Diseases in Young Children Before Use of 13-Valent Pneumococcal Conjugate
- Human Diversity of Killer Cell Immunoglobulin-Like Receptors and Human Leukocyte Antigen Class I Alleles and Ebola Virus Disease Outcomes
- IgG Seroreversion and Pathophysiology in Severe Acute Respiratory Syndrome Coronavirus 2 Infection
- Performance of Nucleic Acid Amplification Tests for Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Prospectively Pooled Specimens
- Susceptibility of Domestic Swine to Experimental Infection with Severe Acute Respiratory Syndrome Coronavirus 2
- Cellular Immunity in COVID-19 Convalescents with PCR-Confirmed Infection but with Undetectable SARS-CoV-2-Specific IgG
- Attribution of Illnesses Transmitted by Food and Water to Comprehensive Transmission Pathways Using Structured Expert Judgment, United States
- Intrafamilial Exposure to SARS-CoV-2 Associated with Cellular Immune Response without Seroreversion, France
- Invasive Fusariosis in Nonneutropenic Patients, Spain, 2000–2015
- Nosocomial Coronavirus Disease Outbreak Containment, Hanoi, Vietnam, March–April 2020
- Estimating the Force of Infection for Dengue Virus Using Repeated Serosurveys, Ouagadougou, Burkina Faso
- Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States
- Post–13-Valent Pneumococcal Conjugate Vaccine Dynamics in Young Children of Serotypes Included in Candidate Extended-Spectrum Conjugate Vaccines
- Precise Species Identification by Whole-Genome Sequencing of Enterobacter Bloodstream Infection
- Delineating and Analyzing Locality-Level Determinants of Cholera, Haiti
- Hannibal’s Ophthalmia—A New Answer to an Ancient Question
- Territorywide Study of Early Coronavirus Disease Outbreak, Hong Kong, China
- Viral Metagenomic Analysis of Cerebrospinal Fluid from Patients with Acute Central Nervous System Infections of Unknown Origin, Vietnam
- Severe Human Bocavirus–Associated Pneumonia in Adults at a Referral Hospital, Seoul, South Korea

To revisit the January 2021 issue, go to: https://wwwnc.cdc.gov/eid/articles/issue/27/1/table-of-contents
Seroepidemiologic Survey of Crimean-Congo Hemorrhagic Fever Virus in Logging Communities, Myanmar

Appendix

Project Approvals

Study protocols were reviewed independently and ethical approval was provided by the Institutional Review Board (approval no. 889159–2) and Institutional Animal Care and Use Committee (approval no. 19520) at the University of California, Davis, the Ethics Review Committee of the Department of Medical Research (approval no. 012816), the Forest Department of the Ministry of Natural Resources and Environmental Conservation, the Livestock Breeding and Veterinary Department and the Myanmar Timber Enterprise.

Bead-Based Serologic Assay

Specific immunoglobulin G (IgG) reactivity against Crimean-Congo hemorrhagic fever virus (CCHFV) was detected by using a bead-based assay, MagPix (Luminex Corporation, https://www.luminexcorp.com), developed at the U.S. Army Medical Research Institute of Infectious Diseases. MagPix has demonstrated an enhanced sensitivity profile relative to conventional ELISA (1,2) and detailed methods have been described previously by Smith et al. (3). In brief, recombinant CCHFV nucleoprotein, produced in a baculovirus expression system and based on the IbAr10200 isolate (GenBank accession no. KY484036) as a reference strain, were conjugated to magnetic microspheres by using the xMAP Antibody Coupling Reagent Kit (Luminex Corporation) according to the manufacturer’s instructions. Antigen coupled beads were combined with 1:100 diluted serum and analyzed on the MagPix instrument. Data were evaluated as signal to noise (S/N), with noise being the average median fluorescence intensity of each bead set in response to naive serum samples. We considered any sample with S/N >20 to be seropositive.
Assay Validation

In a comparative study evaluating the immune response to both CCHFV strain Kosova Hoti (GenBank accession nos. DQ133507, EU037902, EU044832) and strain Afg09–2990 (GenBank accession nos. HM452307, HM452306, HM452305) in experimentally infected Cynomolgus macaques (*Macaca fascicularis*), host antibody response was measured from 1–28 days post CCHFV inoculation by viruses derived from both IgG MagPix assay and neutralization assay. Virus-neutralization response was evaluated by using a virus-like particle (VLP) system with glycoproteins based on CCHFV strain IbAr 10200. We observed the emergence of neutralizing antibodies in serum samples by day 9 post infection for both groups, with broadly similar kinetics and endpoint titers between the Hoti and Afg09 infected groups. Mean fold increase (MFI) values averaging 5,737 corresponded with an 80% plaque reduction neutralization titer (PRNT$_{80}$) of 1:100 and MFI values averaging 10,243 corresponded with a PRNT$_{80}$ of 1:400. MagPix and PRNT$_{80}$ values both peaked at day 21 post inoculation.

Determination of Cutoff Value

To determine cutoff values, MFI and S/N were evaluated for a large multiregional serum set, 1,614 samples from Africa and 634 from Asia. Cutoff’s were conservatively set at S/N of 20, far exceeding standard serologic assay cutoff algorithms that would have used 3 standard deviations above the mean of the negative controls.

PCR Assay for Bunyaviral Small, Medium, and Large Segments

Samples were processed for viral detection by using consensus PCR, which enables the universal amplification of sequences from viruses within a given family or genus, and the subsequent discernment of viral strains within. Total nucleic acid was extracted from whole blood by using Direct-zol RNA Miniprep Kits (Zymo Research, https://www.zymoresearch.com) according to the manufacturer’s instructions. Total RNA was reverse transcribed into complementary DNA (cDNA) by using SuperScript III (Invitrogen, https://www.thermofisher.com) according to the manufacturer’s instructions, and 3 assays were used for detection of bunyaviral small, medium, and large segments as described previously by Briese, et al. (4).
Statistical Analyses

To evaluate associations between human demographic and animal contact behaviors, all demographic factors, including age, sex, and livelihood, were first evaluated for associations with animal contact behaviors to assess potential confounding. Fisher exact tests were used to determine associations between CCHFV exposure and demographic as well as high-risk human–animal contact behaviors. Odds ratios were calculated by using a conditional maximum likelihood estimate method. For variables, in which 0-count cells were present, we calculated odds ratios by using an unconditional maximum likelihood estimate, Haldane-Anscombe correction. We considered $p<0.05$ statistically significant. Then we used multivariable logistic regression to assess the association between high-risk wild animal contact behaviors and other risk factors that were significant on bivariate analysis. Variables were included when they significantly improved model fit, based on the likelihood ratio test ($p<0.1$), while minimizing the Akaike information criterion. Overall model fit was assessed by using the Hosmer-Lemeshow goodness-of-fit test. All statistical analyses were performed using R version 3.6.1 (R Foundation for Statistical Computing, https://www.r-project.org).

References

Human–Animal Contact Behavior Questionnaire

Participant ID: ___________________________
1. Date of Interview _____________________

2. Where are you conducting this interview?
 Village/City ______________________________
 District __________________________________
 Province/State ____________________________
 Latitude __________________________ Longitude ___________________________
 Interviewer: Please collect GPS coordinates if administering using paper and pen.
 Interview/Questionnaire Begins

3. How old are you? __________________________________
 If the exact age is unknown, enter the respondent's estimated age.

4. Where do you live?
 Village/Town/City ______________________________
 District ______________________________________
 Province/State ______________________________________
 Interviewer: Probe for landmarks or nearest known site if area unknown. GPS coordinates to be identified and entered after completion of interview.

5. How long have you lived there?
 Select one option.
 <1 mo
 1 mo–1 y
 >1–5 y
 >5–10 y
 >10 y

6. How many other people live in the dwelling where you live? ______________________
 Skip to question 9 if answer is 0.

7. How many in the dwelling are children less than 5 y old? ______________________

8. How many in the dwelling are male? ___________________

9. Is the dwelling a permanent structure (that cannot be moved)?
 yes
 no

10. Do you get water from:
 Select all that apply.
 piped in water/water taps
 covered well
 uncovered well/pond/river
 water truck/rainwater harvest
 other

11. Do you treat your drinking water?
 yes
 no

12. If yes, how do you treat your water?
 Select all that apply.
 boil
 filter
 add chlorine or bleach
 solar disinfection
 other

13. Is your source for drinking water ever used by animals?
 yes
 no

14. In your dwelling is there a dedicated location for human solid waste/excreta? (e.g., toilet, latrine, designated area)
 yes
 no

15. What is the highest level of education you have completed?
 Select one option.
 primary school
 secondary school
 Finished 10th standard
16. What is the highest level of education that your mother completed? Select one option.

<table>
<thead>
<tr>
<th>Option</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>primary school</td>
<td></td>
</tr>
<tr>
<td>secondary school</td>
<td></td>
</tr>
<tr>
<td>Finished 10th standard</td>
<td></td>
</tr>
<tr>
<td>college/university/professional</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

17. Since this time last year what are the activities you have done to earn your livelihood? Select all that apply.

1. extraction of minerals, gas, oil, timber, coal
2. crop production
3. wildlife restaurant business
4. wild/exotic animal trade/market business
5. rancher/farmer animal production business
6. meat processing, slaughterhouse, abattoir
7. zoo/sanctuary animal health care
8. protected area worker
9. hunter/trapper/angler
10. forager/gatherer/non-timber forest product collector
11. migrant laborer
12. nurse, doctor, traditional healer, community health worker
13. construction
14. other:

18. If more than one activity was selected, what is the activity on which you spent the most time since this time last year? *
Write in the activity number from the above list. __________________

<table>
<thead>
<tr>
<th>Option</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>manager (non-government)</td>
<td></td>
</tr>
<tr>
<td>worker (non-government)</td>
<td></td>
</tr>
<tr>
<td>manager (Government)</td>
<td></td>
</tr>
<tr>
<td>Worker (Government)</td>
<td></td>
</tr>
<tr>
<td>live and work at home independently (Skip to question 28)</td>
<td></td>
</tr>
<tr>
<td>Professional (health worker, teacher)</td>
<td></td>
</tr>
<tr>
<td>other:</td>
<td></td>
</tr>
</tbody>
</table>

20. Where do you work? (If different from where you live.)
Village/Town/City ____________________________
District ____________________________________
Province/State _______________________________

Interviewer: Probe for landmarks or nearest known site if area unknown. GPS coordinates to be identified and entered after completion of interview.

Medical History Section

In this section, I'm going to ask you about any illness or sickness that is not known or recognized in the community, including by medical or treatment providers.

21. Where do you usually get treatment for medical problems? Select all that apply.

<table>
<thead>
<tr>
<th>Option</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>clinic/health center</td>
<td></td>
</tr>
<tr>
<td>hospital</td>
<td></td>
</tr>
<tr>
<td>mobile clinic</td>
<td></td>
</tr>
<tr>
<td>community health worker</td>
<td></td>
</tr>
<tr>
<td>traditional healer</td>
<td></td>
</tr>
<tr>
<td>dispensary or pharmacy</td>
<td></td>
</tr>
</tbody>
</table>

22. In your lifetime, have you ever had an unusual illness with any of the following symptoms (READ ONLY SYMPTOMS) Select all that apply.

- fever with headache and severe fatigue or weakness (encephalitis)
- fever with bleeding or bruising not related to injury (hemorrhagic fever)
- fever with cough and shortness of breath or difficulty breathing (SARI)
- fever with muscle aches, cough, or sore throat (ILI)
- fever with diarrhea or vomiting
- fever with rash
- persistent rash or sores on skin
- no (Skip to question 33)
- yes but, none of these symptoms - describe __
23. Since this time last year, have you had any of these symptoms?
 yes
 no (Skip to question 29)

24. If yes, which ones?
 Select all that apply.
 fever with headache and severe fatigue or weakness (encephalitis)
 fever with bleeding or bruising not related to injury (hemorrhagic fever)
 fever with cough and shortness of breath or difficulty breathing (SARI)
 fever with muscle aches, cough, or sore throat (ILI)
 fever with diarrhea or vomiting
 fever with rash
 persistent rash or sores on skin
 yes but, none of these symptoms - describe _____________________________

25. In your opinion, when you were sick, what caused this sickness?
 Select all that apply.
 contact with sick people
 contact with wild animals
 contact with other animals
 bad food or water
 bad spirits/witchcraft
 wound or injury
 I don't know
 other: _____________________________

26. Since this time last year, have any of the people you lived with had any of these symptoms?
 yes
 No (skip to question 29)

27. If yes, which ones?
 Select all that apply.
 fever with headache and severe fatigue or weakness (encephalitis)
 fever with bleeding or bruising not related to injury (hemorrhagic fever)
 fever with cough and shortness of breath or difficulty breathing (SARI)
 fever with muscle aches, cough, or sore throat (ILI)
 fever with diarrhea or vomiting
 fever with rash
 persistent rash or sores on skin
 yes but, none of these symptoms - describe _____________________________

28. Since this time last year, did anyone you lived with die from this illness?
 yes
 no

Movement Section

In this section, I’m going to ask you about any travel you have done since this time last year.

29. Have you traveled since this time last year?
 If answer is no, skip to the next section.
 yes
 no

30. Where have you traveled since this time last year? Anywhere else?
 Interviewer: Probe for landmarks or nearest known site if area unknown. GPS coordinates to be identified and entered after completion of interview.
 Collect up to 6 locations.

 If there are more than six locations check here.
 Do not collect additional location information.

31. Why have you traveled?
 Select all that apply.
 work
 visit family
 moved
 religious reasons
Animal Contact Section

In this section, I’m going to ask you about the animals in your life.
If answered “no” under the “in your lifetime” column, then no answer is required under the “Since this time last year” column.

<table>
<thead>
<tr>
<th>Question</th>
<th>In your lifetime</th>
<th>Since this time last year</th>
</tr>
</thead>
<tbody>
<tr>
<td>32. Has an animal lived as a pet in or near your dwelling?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>33. Have you handled live animals?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>34. Have you raised live animals?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>35. Have you shared a water source with animals for washing?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>don’t know</td>
<td>don’t know</td>
</tr>
<tr>
<td>36. Have you seen animal feces in or near food before you have eaten it?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>37. Have you eaten food after an animal has touched or damaged it?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>For example, chew marks or scratches</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>don’t know</td>
<td>don’t know</td>
</tr>
<tr>
<td>38. Do any animals come inside the dwelling where you live?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>39. Have you cooked or handled meat, organs or blood from a recently killed animal?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>40. Have you eaten raw or undercooked meat or organs or blood?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>41. Have you eaten an animal that you knew was not well /sick?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>don’t know</td>
<td>don’t know</td>
</tr>
<tr>
<td>42. Have you found a dead animal and collected it to eat or share?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Select all that apply.</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>43. Have you found a dead animal and collected it to sell it?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>44. Have you been scratched or bitten by an animal?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
| 45. The last time you were scratched, bitten or cut yourself while butchering or slaughtering, what did you do? Select all that apply. | let someone else take over
wash wound with soap and water
bandage wound
visit doctor
nothing - kept working
never butcher or slaughter
no
| 46. Do you think there are any risks associated with slaughtering or butchering when you have an open wound? Interviewer: Do not read responses. | no
yes, but I don’t know what they are
yes, it can make you sick
yes, it can poison you

Page 7 of 12
yes, it can infect you with a disease
don't know
other

<table>
<thead>
<tr>
<th>47. Have you slaughtered an animal?</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48. Have you hunted or trapped an animal?</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>49. Ask which animals/mammals for each "yes" category.</th>
<th>Circle all headings where "yes" was answered in questions above.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elephant</td>
<td>pet (32) handle (33) raise (34) feces in or near food (36) cooked / handle (39) eaten raw/ under-cooked (40) eaten sick (41) found dead (42/43) scratched/d bitten (44) slaughtered (47) hunted/trapped (48)</td>
</tr>
<tr>
<td>rodents/shrews</td>
<td></td>
</tr>
<tr>
<td>bats</td>
<td></td>
</tr>
<tr>
<td>non-human primates</td>
<td></td>
</tr>
<tr>
<td>birds</td>
<td></td>
</tr>
<tr>
<td>carnivores</td>
<td></td>
</tr>
<tr>
<td>ungulates</td>
<td></td>
</tr>
<tr>
<td>pangolins</td>
<td></td>
</tr>
<tr>
<td>Poultry/other fowl</td>
<td></td>
</tr>
<tr>
<td>goats/sheep</td>
<td></td>
</tr>
<tr>
<td>swine</td>
<td></td>
</tr>
<tr>
<td>cattle/buffalo</td>
<td></td>
</tr>
<tr>
<td>dogs</td>
<td></td>
</tr>
</tbody>
</table>
50. Which crops are at this site? Select all that apply.
- coffee, tea, or cocoa plants
- fruit or nut trees
- oil tree plantation
- oil seed crops
- hardwood plantation
- dry grains
- sugar
- vegetable or fruit crops
- pulses/legume
- fiber
- forages
- cover crops
- fallow fields
- rubber
- fruits or nuts

51. How long have the crops / plantations been growing here?
- Less than 1 y
- 1–2 y
- 2–5 y
- 5–10 y
- 11–20 y
- 21–30 y
- Greater than 30 y

52. How frequently are crops / plantations harvested?
- Less than 1 y
- 1–2 y
- 2–5 y
- 5–10 y
- 11–20 y
- 21–30 y

53. What wild animals live in crops / plantations?
- rodents/shrews
- bats
- non-human primates
- birds
- carnivores
- ungulates
- pangolins

54. What type of work or industry is conducted here? Select one option.
- underground mining (by shafts or tunnels)
- open surface mining
- hydraulic mining (high pressure water)
- gathering, panning, or collecting
- oil well/gas field
- logging
- other

55. What product(s) are extracted? Select one option.
- coal
- coltan
- diamond or other gemstone
- tin
- gold/silver
- lead
- oil/gas
- timber/plant
- electricity
- other (please specify)
56. Do you live on the work site? yes
 no
57. To the best of your knowledge, how many people work at this site?
 <10
 10–100
 101–1000
 1001–10,000
 >10,000
58. How long have you worked at this site?
 <1 mo
 1 mo–1 y
 >1 y–5 y
 >5 y
59. Is there on-site food production? yes
 no
60. If yes, who pays for the cost of growing the food crops? the company
 the workers
61. Is there meat available for consumption? yes
 no
62. If yes, where does the meat come from?
 farmed onsite
 farmed and purchased from nearby local communities
 purchased from wholesale market
 locally caught/hunted
 bought frozen
 don't know
63. Is it possible to consume bushmeat/wild animal meat on or near the site? yes
 no
64. Is there a designated area for rubbish, including animal waste from slaughter/butcher and animal excrement? yes
 no
65. If yes, do people use the designated location for rubbish? yes
 no
66. Do any animals raid food supplies or destroy crops? yes
 no
67. If yes, what animals? Select all that apply.
 rodents/shrews
 bats
 non-human primates
 birds
 carnivores
 ungulates
 pangolins
 poultry/other fowl
 goats/sheep
 camels
 swine
 cattle/buffalo
 dogs
 cats
68. What is done to stop animals from raiding or destroying food supplies? Select all that apply.
 barriers around fields
 barriers on individual trees
 fire
 poison
 traps
 shooting
 loud sounds
 domestic/guardian animals
 flooding
Questions

69. What animals have you hunted since this time last year? Select all that apply.
- rodents/shrews
- bats
- non-human primates
- birds
- carnivores
- ungulates
- civets
- pangolins

70. Since this time last year, what methods have you used to hunt/trap animals? Select all that apply.
- snare
- bow
- hands
- gun
- machete
- knife
- net
- cage
- trap
- other

71. What is the purpose of your trapping or hunting? Select all that apply.
- for consumption at home
- for sale for consumption
- for sale alive at market
- for sale of animal products
- live trapping of nuisance animals
- culling of nuisance animals

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Rodents/Shrews</th>
<th>Bats</th>
<th>Non-Human Primates</th>
<th>Birds</th>
<th>Carnivores</th>
<th>Ungulates</th>
<th>Pangolins</th>
</tr>
</thead>
<tbody>
<tr>
<td>For consumption at home</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For sale for consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For sale alive at market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For sale of animal products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live trapping of nuisance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animals for translocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culling of nuisance animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since this time last year, when you hunt or trap:

72. Are you exposed to blood?
- yes
- no

73. Have you been scratched or bitten?
- yes
- no

74. Since this time last year, have you seen an outbreak of dead wild animals?
- yes
- no

75. If yes, which wild animals? Select all that apply. (add species list)
- rodents/shrews
- bats
- non-human primates
- birds
- carnivores
- ungulates
- pangolins

76. What do you do when you find an animal dead (not in a trap or shot by another hunter)? Select all that apply.
- touch it to see if it is still fresh
- butcher in the forest
- smoke or cook in the forest
- take home to prepare
- bury it
- report it to authorities
- take it to sell it
- nothing
- other

77. How do you transport a dead animal, if you take it? Select all that apply.
- not wrapped
- wrapped in leaves or other natural material

Page 11 of 12
<table>
<thead>
<tr>
<th>Q 78. Do you use special protective equipment (e.g., shoes, masks, gloves)?</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Q 79. If yes, which protective equipment? Select all that apply.</th>
</tr>
</thead>
<tbody>
<tr>
<td>shoes/boots</td>
</tr>
<tr>
<td>mask</td>
</tr>
<tr>
<td>clothes</td>
</tr>
<tr>
<td>gloves</td>
</tr>
<tr>
<td>gown/apron</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q 80. When do you use protective equipment? Select all that apply.</th>
</tr>
</thead>
<tbody>
<tr>
<td>handling animals</td>
</tr>
<tr>
<td>slaughter</td>
</tr>
<tr>
<td>butcher</td>
</tr>
<tr>
<td>always on at work</td>
</tr>
<tr>
<td>other:</td>
</tr>
</tbody>
</table>