About the Author

Dr. Di Micco is a general surgery resident at Spital Schwyz, Switzerland. His principal research interests are translational medicine, abdominal surgery, and prevention of surgical wound infections.

References

Address for correspondence: Reto Nüesch, Department of Internal Medicine, Spital Schwyz, 10 Waldeggerstrasse, 6430 Schwyz, Switzerland; email: reto.nuesch@spital-schwyz.ch

Confirmed Cases of Ophidiomycosis in Museum Specimens from as Early as 1945, United States

Jeffrey M. Lorch, Steven J. Price, Julia S. Lankton, Andrea N. Drayer

Author affiliations: US Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA (J.M. Lorch, J.S. Lankton); University of Kentucky, Lexington, Kentucky, USA (S.J. Price, A.N. Drayer)

DOI: https://doi.org/10.3201/eid2707.204864

Ophidiomycosis represents a conservation threat to wild snake populations. The disease was reported in North America early in the 21st century, but the history of ophidiomycosis has not been investigated. We examined museum specimens and confirmed cases of ophidiomycosis >50 years before the disease’s reported emergence.

Emerging fungal pathogens of wildlife are recognized as major threats to global biodiversity, causing population declines and extinction events in a variety of host species (1). Ophidiomyces ophidiicola, the causative agent of ophidiomycosis, is one such pathogen recognized as a conservation threat to wild snakes (2). The disease first gained attention in 2008 when fatal infections emerged in eastern massasauga rattlesnakes (Sistrurus catenatus) in Illinois, USA (3), and has since been documented throughout North America and Europe (2,4). The earliest retrospective detection of O. ophidiicola in snakes was from 2000 (5). We report the earliest known confirmed cases of ophidiomycosis in free-living snakes in the United States, dating back to 1945.

We investigated the historical occurrence of ophidiomycosis in snakes in the United States by examining specimens preserved in formalin or ethanol at the University of Wisconsin Zoological Museum (UWZM; Madison, WI, USA) and Morehead State University Museum Collection (Morehead, KY, USA). We visually examined 524 specimens representing 30 snake species from 19 states in the eastern United States collected during 1900–2012 (Appendix 1, https://wwwnc.cdc.gov/EID/article/27/7/20-4864-App1.xlsx). To reduce risk for cross-contamination, we first examined snakes for clinical signs of ophidiomycosis within the glass jars in which they were stored. When specimens were removed from the jars for sampling, new gloves were worn to handle
each snake. We observed clinical signs consistent with ophidiomycosis (Figure) in 47 (9.0%) snakes (6). These specimens represented 12 species from 7 states with collection dates ranging from 1929 to 1983 (Appendix 1).

Clinical signs of ophidiomycosis are not pathognomonic, and a confirmed diagnosis requires compatible histopathologic lesions and the detection of *O. ophidiicola* (6). Because these confirmatory steps involve destructive sampling of museum material, we selected a subset of snakes (*n* = 12) for these analyses. We targeted specimens with large (>0.5 cm2) or multiple skin lesions from distant geographic areas and collected >25 years before the reported 2008 emergence of ophidiomycosis (3) (Table). From selected snakes, we excised and formalin-fixed portions of lesioned skin, routinely processed them for light microscopy, and stained with periodic acid-Schiff and Grocott methenamine silver methods. We also collected small pieces of lesioned skin (≈4 mm2) for PCR-based detection of *O. ophidiicola*. We extracted DNA from dehydrated tissue by using the Gentra Puregene Tissue Kit (QIAGEN, https://www.qiagen.com); we used 10 µL of the kit-provided proteinase K per sample.

![Figure. Gross and histologic lesions in museum snake specimens with confirmed ophidiomycosis, United States. A, B) Crotalus horridus (A; University of Wisconsin Zoology Museum [UWZH] accession no. 22773) and Cemophora coccinea (B; UWZH accession no. 13822) specimens with thickened necrotic scales (arrows). C, D) Histologic sections of lesioned skin from the same C. horridus (C; UWZH accession no. 22773) and C. coccinea (D; UWZH accession no. 13822) specimens showing arthroconidia (arrow) and intralesional fungal hyphae consistent with *Ophidiomyces ophidiicola* infection. Scale bars indicate 20 µm.](image)

Table. Museum snake specimens with clinical signs of ophidiomycosis that were subjected to histopathologic examination and PCR specific for *Ophidiomyces ophidiicola*, United States*

<table>
<thead>
<tr>
<th>Snake species</th>
<th>Museum accession no.</th>
<th>Museum collection</th>
<th>State collected</th>
<th>Date collected</th>
<th>Ophidiomycosis histopathology</th>
<th>PCR result†</th>
<th>Ophidiomycosis diagnosis‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crotalus horridus</td>
<td>UWZH 22773</td>
<td>UWZM</td>
<td>WI</td>
<td>1958 Aug</td>
<td>Positive</td>
<td>Positive</td>
<td>Confirmed</td>
</tr>
<tr>
<td>C. horridus</td>
<td>UWZH 23927</td>
<td>UWZM</td>
<td>TN</td>
<td>1973 Apr 13</td>
<td>Positive</td>
<td>Negative</td>
<td>Apparent</td>
</tr>
<tr>
<td>C. horridus</td>
<td>UWZH 23930</td>
<td>UWZM</td>
<td>TN</td>
<td>1973 Apr 13</td>
<td>Positive</td>
<td>Negative</td>
<td>Apparent</td>
</tr>
<tr>
<td>Cemophora coccinea</td>
<td>UWZH 13833</td>
<td>UWZM</td>
<td>FL</td>
<td>1945</td>
<td>Positive</td>
<td>Positive</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Lampropeltis triangulum</td>
<td>UWZH 22583</td>
<td>UWZM</td>
<td>WI</td>
<td>1982 Apr 25</td>
<td>Positive</td>
<td>Negative</td>
<td>Apparent</td>
</tr>
<tr>
<td>Pantherophis spiloides</td>
<td>UWZH 23931</td>
<td>UWZM</td>
<td>TN</td>
<td>1973 Apr 13</td>
<td>Positive</td>
<td>Positive</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Agkistrodon contortrix</td>
<td>582</td>
<td>MSUMC</td>
<td>KY</td>
<td>1979 Oct 29</td>
<td>Equivocal§</td>
<td>Negative</td>
<td>Possible</td>
</tr>
<tr>
<td>Coluber constrictor</td>
<td>603</td>
<td>MSUMC</td>
<td>KY</td>
<td>1980 May 6</td>
<td>Positive</td>
<td>Negative</td>
<td>Apparent</td>
</tr>
<tr>
<td>C. constrictor</td>
<td>632</td>
<td>MSUMC</td>
<td>KY</td>
<td>1980 May 16</td>
<td>Negative</td>
<td>Negative</td>
<td>Possible</td>
</tr>
<tr>
<td>Regina septemvittata</td>
<td>496</td>
<td>MSUMC</td>
<td>KY</td>
<td>1979 May 30</td>
<td>Equivocal§</td>
<td>Negative</td>
<td>Possible</td>
</tr>
<tr>
<td>R. septemvittata</td>
<td>511</td>
<td>MSUMC</td>
<td>KY</td>
<td>1979 Jun 2</td>
<td>Equivocal§</td>
<td>Negative</td>
<td>Possible</td>
</tr>
<tr>
<td>R. septemvittata</td>
<td>634</td>
<td>MSUMC</td>
<td>KY</td>
<td>1980 May 18</td>
<td>Equivocal§</td>
<td>Negative</td>
<td>Possible</td>
</tr>
</tbody>
</table>

*MSUMC, Morehead State University Museum Collection; Oo, *Ophidiomyces ophidiicola*; UWZM, University of Wisconsin Zoology Museum.

†Samples are listed as positive if ≥1 PCR assay targeting the internal transcribed spacer region or mitochondrial NADH dehydrogenase subunit 1 gene was positive. See Appendix 1 (https://wwwnc.cdc.gov/EID/article/27/7/20-4864-App1.xlsx) for assay-specific results.

‡Based on Baker et al. (6).

§Equivocal indicates some histologic features consistent with ophidiomycosis were present but ≥1 diagnostic features were not observed (Appendix 1).
Negative controls consisted of blank extractions. For PCR, we used existing primers that specifically target the internal transcribed spacer region (ITS) of *O. ophidiicola* (6) and a newly designed PCR assay that targets mitochondrial NADH dehydrogenase subunit 1 (nad1) (Appendix 2, https://wwwnc.cdc.gov/EID/article/27/7/20-4864-App2.pdf). We targeted these 2 loci, which exist at high copy numbers in the genome, because amplifiable DNA was expected to be at low abundance in the preserved specimens. We cloned and sequenced PCR amplicons of the appropriate size to confirm the presence of *O. ophidiicola*. We conducted tissue collection, DNA extraction, and PCR under strict protocols (e.g., unidirectional workflow and regular decontamination of work surfaces and equipment) to prevent contamination of samples.

Of the 12 snakes subjected to histopathological analyses, 7 (58.3%) had microscopic lesions with intrasional fungi consistent with ophidiomycosis (6) (Table; Figure). We detected DNA from *O. ophidiicola* in 3 (50%) of the 6 specimens from UWZM that had been stored in 70% ethanol (Table). We did not detect DNA of *O. ophidiicola* in snakes from the Morehead State University Museum Collection (n = 6), likely because these specimens were stored long-term in formalin, which is known to affect the recovery of amplifiable nucleic acid. These results highlight the importance of targeting specimens stored in ethanol rather than formalin for molecular-based detection of pathogens in archival material.

We amplified the ITS target from 2 of the 3 specimens and nad1 target from all 3 specimens; these sequences were 100% identical to existing *O. ophidiicola* sequences in GenBank. The 3 additional specimens from UWZM were strongly suspected to represent cases of ophidiomycosis on the basis of the presence of arthroconidia in histologic sections of lesional skin (6); however, fungal DNA from these specimens may not have been suitable for PCR amplification. Negative controls performed as expected. The 3 PCR-positive specimens met the diagnostic criteria for confirmed cases of ophidiomycosis (6); they were collected in Florida in 1945, Wisconsin in 1958, and Tennessee in 1973 (Table). These cases predate the earliest previously known detection of *O. ophidiicola* in free-living snakes in North America by as much as 55 years (5).

Museum specimens can provide crucial insights into the history of emerging infectious diseases. Preserved animal specimens have been used to trace the origin and spread of other fungal pathogens, such as *Pseudogymnoascus destructans* (white-nose syndrome in bats) and *Batrachochytrium* spp. (chytridiomycosis in amphibians) (8–10). By using a similar approach, we demonstrate that ophidiomycosis was circulating in the eastern United States for decades before its recognition as an emerging disease. Future work focusing on how such factors as climate change, environmental disturbance, and underlying health of snake populations influence ophidiomycosis dynamics might reveal the mechanism by which ophidiomycosis is emerging (2).

Acknowledgments

We thank the University of Wisconsin Zoological Museum and Morehead State University Museum Collection for allowing us to examine and destructively sample specimens.

This work was funded by the US Geological Survey and McIntire-Stennis Cooperative Forestry Research Program (#1014910).

Data for this study are available at https://doi.org/10.5066/P9FLC1XK.

About the Author

Dr. Lorch is a diagnostic microbiologist and research scientist at the US Geological Survey National Wildlife Health Center, Madison, Wisconsin. His research focuses on emerging infectious diseases of wildlife and the development of molecular tools for use in wildlife disease diagnostics.

References

7. Bohuski E, Lorch JM, Griffin KM, Blehert DS. TaqMan real-time polymerase chain reaction for detection of *Ophidiomyces*
In India, sporadic outbreaks of buffalopox, which can be caused by vaccinia virus (VACV), have been reported among cattle and buffaloes (1–3) and also in humans (3). We describe an outbreak affecting 120 lactating buffaloes and 40 lactating cows in Kannivadi, Navapatti, Alathuranpatti, Maniakaranpatti, Muthukumaranpatti, S.Pudur, and E.Chittor, Dindigul district; and in Krishnarayapuram, Karur district, in Tamil Nadu, India in 2004. Pock lesions (0.5–1 cm diameter) were seen over the bodies of lactating buffaloes but restricted to only the udder and teats of lactating cows (Figure, panel A). Buffalopox did not cause death in the animals we reviewed; it affected more buffaloes (30%–50%) than cows (20%–30%). Suckling calves developed pock lesions on the forehead, lips, and mouth. Three milkers who worked with the affected animals experienced multiple pock lesions (1 cm diameter) on the fingers, interdigital webs, wrist and forearm (Figure, panel B) and generalized effects including fever (100°F) and enlargement of axillary lymph nodes.

To investigate the causative agent, we used existing clinical samples. Scab samples were collected randomly from 20 affected animals (both buffaloes and cows). We examined scab suspensions under transmission electron microscope (EM) at 80 KV and inoculated the suspension in BHK21 cell line for virus isolation. We examined scab homogenates and cell culture fluid by PCR for differential diagnosis of cowpox virus and VACV infection (4). EM revealed typical brick-shaped pox virus particles of ≈290 × 270 nm with irregularly arranged superficial filaments formed by tubules (Figure, panel C). After 2 blind passages, we noticed in BHK21 cell lines cytopathogenic effects such as cellular rounding, cellular fusion, and intracytoplasmic inclusion bodies (Figure, panel D) after 48–60 hours of infection; PCR analysis revealed the causative agent to be VACV.

During the global eradication of smallpox, strains of VACV were used as vaccine. VACV infection sometimes transmitted from the vasicular lesion of vaccinae to domestic animals, usually cattle; in turn, infected animals transmitted VACV to susceptible humans (5). Several outbreaks in cattle and humans that were thought to be cowpox were in fact caused by VACV (1,6,7). The infected animals were treated with parenteral injection of antimicrobial drugs for 1 week to control secondary bacterial infection and an antiinflammatory drug for 3 days to reduce pain and inflammation. Animal workers were also advised to clean the animals’ lesions with 1% potassium permanganate solution followed by tropical application over the pock lesions with indigenious product of neem leaf extract and turmeric powder suspended in glycerin. Individual animals recovered in ≈1 month. Similarly affected humans were diagnosed at primary healthcare centers and treated with oral antimicrobial drugs and analgesics for 1 week, which reduced pain and pustules. Healing was complete in 3 weeks’ time.