
Mathematical transmission models are useful tools 
for predicting the magnitude, duration, and 

severity of the severe acute respiratory coronavirus 

2 (SARS-CoV-2) pandemic. However, widely used 
national-level models might not capture regional het-
erogeneity. The coronavirus disease (COVID-19) out-
break in Colorado, USA, has been the subject of numer-
ous discrepant projections from the Institute for Health 
Metrics and Evaluation and other modeling groups (1), 
which might have structural and data source explana-
tions, highlighting the need for ensuring that models 
are fi t to local epidemiologic data (2–4).

We report on our experience using a locally tai-
lored model to inform policy in Colorado. Social 
distancing policies, intended to decrease contact 
rates, have been cornerstone public health tools for 
pandemic control, and these strategies have been ad-
opted to control SARS-CoV-2 globally (2,5). Until re-
cently, evidence of the effects of social distancing has 
come primarily from studies of the consequences of 
school and transit closures on infl uenza transmission 
(3,4,6). Early evidence suggests that social distancing 
policies can suppress transmission of SARS-CoV-2 
(7,8), and recent evidence suggests a strong correla-
tion between mobility and transmission reduction (9). 
However, these studies largely focused on periods 
when social distancing policies were in place, leaving 
critical questions unanswered regarding how long 
populations will comply with such measures and 
what happens when policies are relaxed.

One of the defi ning characteristics of the COVID-19 
pandemic is the need for rapid response in the face of 
imperfect and incomplete information. Mathematical 
models of infectious disease transmission can be used in 
real-time to estimate parameters, such as the effective re-
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The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) pandemic necessitated rapid local pub-
lic health response, but studies examining the impact of 
social distancing policies on SARS-CoV-2 transmission 
have	struggled	to	capture	regional-level	dynamics.	We	de-
veloped a susceptible-exposed-infected-recovered trans-
mission	model,	parameterized	to	Colorado,	USA‒specifi	c	
data,	to	estimate	the	impact	of	coronavirus	disease‒related	
policy measures on mobility and SARS-CoV-2 transmis-
sion	in	real	time.	During	March‒June	2020,	we	estimated	
unknown parameter values and generated scenario-based 
projections of future clinical care needs. Early coronavirus 
disease policy measures, including a stay-at-home order, 
were accompanied by substantial decreases in mobility 
and	reduced	the	eff	ective	reproductive	number	well	below	
1.	When	some	 restrictions	were	eased	 in	 late	April,	mo-
bility increased to near baseline levels, but transmission 
remained	low	(eff	ective	reproductive	number	<1)	through	
early June. Over time, our model’s parameters were ad-
justed	 to	more	closely	 refl	ect	 reality	 in	Colorado,	 leading	
to	modest	changes	in	estimates	of	intervention	eff	ects	and	
more conservative long-term projections.
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productive number (Re) and the efficacy of current and 
future intervention measures, providing time-sensitive 
data to policy-makers (10). We describe development of 
such a model, in close collaboration with the Colorado 
Department of Health and Environment and the Gov-
ernor’s office, to gauge the current and future effects of 
early policies to decrease social contacts and, later, the 
gradual relaxing of stay-at-home orders.

We developed a compartmental susceptible-ex-
posed-infected-recovered (SEIR) model calibrated 
to statewide COVID-19 case and hospitalization 
data to estimate changes in the contact rate and the 
Re after emergence of SARS-CoV-2 and the imple-
mentation of statewide social distancing policies in 
Colorado. We supplemented model estimates with 
an analysis of mobility by using mobile-device 
location data. Estimates were generated in near 
real time, at multiple time-points, with a rapidly 
evolving understanding of SARS-CoV-2. At each 
time point, we generated projections of the pos-
sible course of the outbreak under future social 
distancing scenarios. Findings were regularly pro-
vided to key Colorado decision-makers. We pres-
ent estimates generated at multiple time points to 
document how our model, estimates and projec-
tions evolved over time. Although our analysis is 
specific to Colorado, our experience highlights the 
need for locally calibrated transmission models to 
inform public health preparedness and policymak-
ing, along with ongoing analyses of the impact of 
policies to slow the spread of SARS-CoV-2.

Methods

COVID-19 Timeline and Policies
The first SARS-CoV-2 case was reported in Colorado 
on March 5, 2020, and a rapid succession of policies to 
control transmission followed (Table 1). The Colora-
do governor formally declared a disaster emergency 
on March 11. During March 14–April 16, a total of 35 
executive orders were mandated to curb SARS-CoV-2 
transmission, including school closures, reduction in 
workforce percentages, and shelter-in-place (stay-
at-home) orders. In conjunction with state executive 
orders, the Colorado Department of Health and En-
vironment issued orders closing restaurants, bars, 
and other congregate environments on March 17 and 
prohibiting gatherings of >10 persons on March 19. 
A state-wide stay-at-home order was in effect dur-
ing March 26–April 26. Transition to a less restric-
tive phase, safer-at-home, began on April 27, which 
enabled some businesses to reopen with restrictions. 
The metropolitan Denver counties, comprising ≈50% 

of the population of Colorado, were under extended 
stay-at-home orders until May 8.

Reported Case and Hospitalization Data
Hospitalization data are a robust indicator of trans-
mission trends compared with reported case data 
because reported case data are sensitive to testing 
capacity. However, because COVID-19 hospitaliza-
tion data were sparse early in the epidemic, we ini-
tially fit models to reported COVID-19 cases from 
the Colorado Electronic Disease Reporting System 
(CEDRS). We fit models to the daily number of 
symptom onsets to reflect a biologically meaning-
ful process (report date can be sensitive to testing 
lags). Missing onset dates were imputed as report 
date minus 7 days, the median onset-to-report lag. 
In May, we began fitting models to the daily num-
ber of hospitalized COVID-19 patients because we 
suspected that reported cases captured a variable 
proportion of infections over time because of in-
creases in testing capacity. Daily hospital census 
records were obtained from EMResource (https://
emresource.juvare.com). Because EMResource ap-
peared to underreport COVID-19 hospitalizations 
during March, we inferred COVID-19 hospitaliza-
tions by using CEDRS before April 8 (Appendix Fig-
ure 1, https://wwwnc.cdc.gov/EID/article/27/9/ 
20-4167-App1.pdf).

Model Description
We used a deterministic age-structured SEIR model 
with 3 age groups (<30, 30–59, and >60 years of age) 
to estimate key model parameters and project the 
number of COVID-19 hospitalizations (Appendix). 
In the model, we assume a single virus introduction 
event occurring on January 24, a date extrapolated 
from the first reported cases in Colorado.

In the model, the probability that an infected per-
son shows development of symptoms (13) and needs 
hospitalization or ICU care is age dependent (14) (Ap-
pendix Table 1). All persons have an equal probability 
of exposure and infection, regardless of age. Initially, 
we used published estimates (15) for the proportion 
of symptomatic case-patients requiring hospitaliza-
tion and critical care. Starting in May, with sufficient 
hospitalization data, we generated Colorado-specific 
estimates of the probability of hospitalization and 
critical care among case-patients by using model-fit-
ting approaches, which enabled us to better account 
for underlying health status and patterns of care in 
Colorado (16).

The model includes 3 types of transmission-re-
ducing parameters: social distancing, mask wearing, 
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and self-isolation of symptomatic persons. Social 
distancing was modeled as a reduction in the con-
tact rate between susceptible and infectious persons 
by multiplying the transmission parameter, β, by (1 
– social distancing). We defined contacts as interac-
tions that could enable spread of infections from an 
infected person to a susceptible person. The term 
social distancing is used to encompass all contact-
reducing behaviors and policies, including working 
from home, school closures, maintaining physical 
distancing, socializing outdoors (vs. indoors), and 
increased hygiene. Social distancing was modeled in 
phases coinciding with major events and policy mea-
sures (Figure 1). Phase 1 (March 17–25) corresponds 
with mid-March policies and increasing public con-
cern regarding COVID-19, phase 2 (March 26–April 

26) corresponds with the state-wide stay-at-home or-
der, phase 3 (April 27–May 8) is the period when half 
the state transitioned to safer-at-home, and phase 4 
(May 9–June 3) is the period when safer-at-home was 
in effect statewide.

We added mask wearing to the model in May (fits 
3 and 4) in response to increasing evidence that masks 
are effective for controlling transmission (17,18). We 
modeled the effect of mask wearing as a reduction 
in the spread of infections from asymptomatic and  
presymptomatic persons to nonhousehold contacts. 
More recent evidence suggests that masks might 
also protect the wearer, an added benefit not con-
sidered here (19). The effectiveness of mask wear-
ing depends on the ability of the mask to trap infec-
tious particles and the proportion of the population  
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Table 1. Key state-level events, executive orders, and policies directed at controlling transmission of SARS-CoV-2,	Colorado,	USA,	
2020* 

Policy/event Description 
Date 

announced 
Policy effective 

date 
Policy 

effective until 
First case of COVID-19 First case of infection with SARS-CoV-2 reported Mar 5 NA NA 
Executive	Order	D	2020	003 Disaster emergency Mar 10 Mar 11 Apr 11 
Executive	Order	D	2020	004 Ski resort closure Mar	14 Mar 15 Mar 22 
Executive	Order	D	2020	006 Extension of ski resort closure Mar	18 Mar	18 Apr 17 
CDPHE Order 20–22 Closure of bars, restaurants, theaters, gymnasiums, 

and casinos 
Mar	16 Mar 17 Apr	16 

CDPHE Order 20–23 Prohibition of >10 person gatherings Mar 19 Mar 19 Apr 19 
Executive Order D 2020 007 School closures	during	Mar	18‒Apr 17 Mar	18 Mar	18 Apr 17 
Executive	Order	D	2020	013 Reduction of in-person	workforce	by	50% Mar 22 Mar	24 May10 
Executive Order D 2020 017 Stay-at-home	order:	directive	to	require	all	residents	

of Colorado to stay home unless in pursuant of 
essential items (i.e., food) or working for critical 

businesses and ordering noncritical businesses to 
close temporarily. 

Mar 25 Mar	26 Apr 11 

Executive Order D 2020 021 Extension	to	school	closures	until	Apr	30 Apr 1 Apr 1 May 1 
Executive	Order	D	2020	024 Stay-at-Home extension Apr	6 Apr	6 Apr	26 
Executive	Order	D	2020	039 Ordering workers in critical businesses and 

government functions to wear nonmedical face 
coverings 

Apr 17 Apr 17 May 17 

Executive	Order	D	2020	041 Suspension of school closures until end of school 
year 

Apr 22 Apr 22 May 20 

Executive	Order	D	2020	044 Safer	at	home:	All	susceptible	persons	and	those	
who have COVID-19 instructed to stay at home. 
State residents directed to limit interactions, only 

travel for essential needs, and limit gatherings to <10 
people in public and private spaces. Nonmedical 
mask coverings recommended. Retail businesses 
can open for curbside delivery, elective medical, 
dental, and veterinary surgeries and procedures 
resume. Retail businesses and personal services 
(e.g.,	salons)	can	open.	Offices	can	open	at	50%	

capacity.† 

Apr	26 Apr 27–May	4 May 27 

Executive	Order	D	2020	058 Disaster emergency extension May 7 May 7 Jun	6 
Executive	Order	D	2020	067 Extending	EO	D	2020	039,	ordering	workers	in	

critical businesses and government, to wear 
nonmedical face coverings 

May	16 May	16 Jun	16	 

Executive Order D 2020 079 Extension	to	EO	D	2020	044:	Safer	at	Home	to	
permit public places to offer outdoor dining, and 

limited indoor dining 

May 25 May 25 Jun 1 

*COVID-19‒relevant executive orders are detailed in (11) and CDPHE policies are described in (12). CDPHE, Colorado Department of Public Health and 
Environment; COVID-19, coronavirus disease; EO, executive order; NA, not applicable; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. 
†Retail business and personal	services	were	permitted	to	open	on	May	1,	offices	were	permitted	to	open	at	50%	capacity	on	May	4.	All	other	measures 
went into effect April 27. 
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wearing masks. We assume in the model that masks 
made from household materials are ≈50% effective 
in trapping infectious particles when worn properly 
(17,18). Previous studies estimated that ≈23% of con-
tacts occur at home (20). Because persons spent more 
time at home during the pandemic, we assumed that 
67% of the contact of an individual is with nonhouse-
hold members. We assumed that mask wearing was 
uniform across asymptomatic and presymptom-
atic persons and fit the proportion of the population 
wearing masks beginning on April 4, the date of the 
governor’s press conference advising persons living 
in Colorado to wear masks. Because some transmis-
sion might also occur by fomites, we modeled mask 
effectiveness as a net 27% reduction in infectiousness 
among asymptomatic persons wearing masks. In 
addition, we assume mask wearing decreases trans-
mission by presymptomatic persons (21,22); this is 
modeled as a 3.4% reduction in infectiousness for 
symptomatic persons wearing masks (assuming that 
symptomatic persons are asymptomatic on 1 of 8 in-
fectious days). This model does not account for po-
tential reduction in infectiousness by symptomatic 
persons who are assumed to isolate (23).

We modeled self-isolation assuming that a propor-
tion of symptomatic case-patients self-isolate 24 hours 
after the onset of symptoms, and that self-isolation 

reduces transmission by symptomatic persons to non-
household contacts. This assumption is modeled as a 
59% reduction in contacts by symptomatic persons 
who self-isolate. Self-isolation begins in the model on 
March 5 and the proportion of symptomatic persons 
who self-isolate is fit to the data.

Estimating Social Distancing and Other Transmission-
Reducing Interventions
We inferred the effect of social distancing and other 
interventions on transmission by using an algorithm-
based optimization procedure at 4 different time points 
from April through June. We used the same approach-
es to estimate parameters that might vary regionally 
or for which there was considerable uncertainty in the 
literature (Table 2). We identified best-fitting param-
eter values by using a least-squares cost function that 
minimized difference between the model-estimated 
and observed number of reported SARS-CoV-2 cases 
in Colorado (fits 1 and 2) and the observed number of 
COVID-19 hospitalizations (fits 3 and 4). When fitting 
to cases (fits 1 and 2), it was necessary to also fit a pa-
rameter for the estimated probability that cases would 
be detected by state surveillance. We minimized the 
cost function by using a 2-stage fitting algorithm in R 
(27) and used the FME package (28) by first applying a 
pseudo-random optimization algorithm (29) to find a 
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Figure 1. Emergence of COVID-19, Colorado, USA, 2020, showing policy-based responses (A) and definition of 4 distinct social 
distancing phases (B) corresponding with early closures (phase 1, March 17‒25); statewide stay-at-home (phase 2, March 26‒April 
26), statewide partial transition to safer-at-home (phase 3, April 27–May 8); statewide safer-at-home (phase 4, May 5–June 3). Social 
distancing parameters were estimated at 4 points during March‒June by using model fitting procedures and reported case data (fits 1 
and 2) and hospital census data (fits 3 and 4). In light of the 5.1 day mean incubation period, the ≈7-day lag between symptom onset 
and case report, and the ≈8-days between symptom onset and hospitalization based on state records, there are ≈12 and 13 day lags 
between infection and case report, and infection and hospitalization, respectively (gray boxes). Thus, at each model fit, we could 
estimate social distancing parameters reflecting transmission conditions up to 12 (fits 1 and 2) or 13 (fits 3 and 4) days before the fit 
date. Asterisks (*) indicate estimate generated for only part of the period. COVID-19, coronavirus disease; P, phase.
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region of minimum difference between the model and 
the data. The second phase used least-squares optimi-
zation applying the Levenberg-Marquardt algorithm 
(30). We calculated 95% CIs by using a Markov Chain 
Monte Carlo simulation with an adaptive Metropolis 
algorithm with 1,500 iterations (28). This method ob-
tains 95% CIs by sampling from a Gaussian distribu-
tion around the mean trajectory of the ordinary dif-
ferential equation model. By the end of March, the 
differential sensitivity matrix was full rank, and thus 
all 6 parameters were identifiable for all datasets used 
(Appendix Figure 3).

Because of the median 7-day lag between symp-
tom onset and reporting, on April 3 (fit 1), we included 
cases that had a symptom onset date through March 
26 for model fitting, which enabled us to generate a 
preliminary estimate of phase 1 social distancing. On 
April 16 (fit 2), we included cases that had an onset 
date through April 9 for model fitting, which enabled 
us to refine estimates of social distancing during phase 
1 and generate preliminary estimates of social dis-
tancing during phase 2. We generated a preliminary 
estimate of phase 3 social distancing on May 15 (fit 3) 
and then re-estimated on June 16 (fit 4), when social 
distancing during phase 4 was estimated. We estimat-
ed the proportion of the population wearing masks 
in fits 3 and 4 with the effectiveness assumptions 

defined and estimated the effective reproduction 
number (Re) from the model output (Appendix). We 
additionally estimated the overall number of hospi-
talizations prevented as a result of decreasing con-
tacts by comparing the fitted model on June 16 with a 
reference scenario assuming no reduction of the con-
tact rate (social distancing = 0%).

Projections of COVID-19 Hospitalizations and ICU Need
We used the fitted parameters to generate projections 
of future hospital and critical care needs under differ-
ent scenarios. Changes in social distancing were im-
plemented beginning 2 weeks after the date of model 
fitting to account for lags in policy implementation. 
All other parameters were held fixed as estimated 
from the model. Preparing for and meeting ICU load 
was a critical decision-making issue.

Population Mobility
We used SafeGraph (https://www.safegraph.com) 
data to examine changes in mobility in Colorado from 
March through June. Specifically, we used an aggre-
gated and anonymized measure of time away from 
home reported at the census block group. We cal-
culated changes in mobility as a percent decrease in 
time away from home relative to pre-epidemic base-
line: January 29–February 15 (mean 2.3 hours).
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Table 2.  Model-estimated	levels	of	social	distancing,	mask	wearing	and	other	parameter	values	at	4	time	points	over	the	course	of	the	
SARS-CoV-2	epidemic,	Colorado,	USA,	2020* 

Characteristic 

Range of possible 
values and 

sources (ref.) 

Fitted value 
as	of	Apr	3† 

(95%	CI) 

Fitted value 
as	of	Apr	16† 
(95%	CI) 

Fitted value 
as of May 15† 
(95%	CI) 

Fitted value 
as	of	Jun	16† 
(95%	CI) 

Estimated effectiveness of social distancing 
 

    
 Phase	1:	early	closures, Mar 17‒25,	%‡ 10‒70 45	(42‒53) 65	(63‒72) 52	(49‒66) 52 (52‒53) 
 Phase	2:	state-wide stay-at-home,  
 Mar	26–Apr	26,	% 

50‒99 NA 76	(72‒77) 80	(80‒83) 81	(80‒82) 

 Phase	3:	half	of	state	under	stay-at-home,  
 half transitioned to safer at home,  
 Apr 27–May	8,	% 

45‒99 NA NA 80	(78‒84) 85	(83‒90) 

 Phase	4:	statewide safer at home,  
 May 9–Jun	3,	%§ 

NA NA NA NA 90	(85‒93) 

 Proportion of population wearing masks  
 starting	Apr	4 

0.1‒0.8 NA NA 0.4 
(0.11‒0.64) 

0.40 
(0.15‒0.76) 

Other parameter values 
 

    
 Rate of infection 0.2‒0.6	(24) 0.41 

(0.39‒0.42) 
0.50 

(0.49‒0.51) 
0.48 

(0.46‒0.49) 
0.48 

(0.48‒0.48) 
 Reduction in infectious contacts due to  
 symptomatic persons who self-isolate after  
 March 5 

0.3‒0.8	(15) 0.38 
(0.22‒0.43) 

0.47 
(0.34‒0.50) 

0.30 
(0.29‒0.31) 

0.32 
(0.32‒0.32) 

 Ratio of infectiousness for symptomatic vs.  
 asymptomatic persons 

1.0‒4.0	(25,26) 2.27 
(2.22‒2.29) 

1.50 
(1.35‒1.56) 

1.65 
(1.60‒1.77) 

1.68 
(1.67‒1.69) 

 Probability that symptomatic cases are 
 identified by state surveillance 

0.05‒0.6	(24) 0.28 
(0.16‒0.45) 

0.33 
(0.27‒0.44) 

NA NA 

*COVID-19, coronavirus disease; NA, not available; ref, reference; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. 
†Fit 1 uses all reported SARS-CoV-2	cases	as	of	Apr	3	with	an	onset	date	of	Mar	26	or	earlier;	fit	2	uses	all	reported	cases	as	of	Apr	16	with	an	onset	date	
of	Apr	8	or	earlier;	fit	3	uses	COVID-19	hospital	census	through	May	15;	fit	4	uses	hospital	census	data	through	Jun	16. 
‡For the purpose of model fitting, phase 1 social distancing was modeled by using a start date of Mar 17, which corresponded with the closure of bars, 
restaurants, casinos, and many public schools in the state. 
§The statewide Safer at Home policy remained in effect through the summer, but because of the 5.1-d mean incubation	period	and	the	8-d lag between 
symptom	onset	and	hospitalization,	we	were	able	to	generate	transmission	estimates	through	Jun	3. 
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We examined the relationship between mobil-
ity and transmission by calibrating the transmission 
parameter, β, conditional on time away from home 
at baseline. We then projected the model forward, 
enabling the parameter for the daily time away from 
home to change according to observed mobility data. 
These projections assume no other transmission re-
ducing behavior (i.e., no mask wearing or self-iso-
lation) to avoid conflating parametric assumptions 
with changes in observed mobility, nor changes to 
any other aspects of the model.

Results

Estimating Efficacy of Social Distancing and Other 
Transmission-Reducing Interventions
On April 3 (fit 1), we generated a preliminary estimate 
of social distancing during phase 1, which equated to 
a ≈45% decrease in the contact rate (Table 2; Figure 2), 
and Re decreased from 5.3 to 2.4 (Figure 3). Because 
of the ≈12-day lag between infection and case report, 
this preliminary estimate was through March 21. On 
April 16 (fit 2), with more complete case data, the 
updated estimate of social distancing during phase 
1 was greater: a 65% decrease in the contact rate. At 
this point, we generated a preliminary estimate of the 
level of social distancing during the first 2 weeks of 
phase 2 (March 26–April 4): 76%. Re was estimated to 

be 0.9. Incorporating increasing data and using CO-
VID-19 hospitalizations instead of case reports, on 
May 15 (fit 3), we re-estimated phase 1 and phase 2 
parameters, which indicated transmission reduction 
had been more moderate initially (social distancing 
= 52% for phase 1), and greater for phase 2 (social dis-
tancing = 80%). On May 15, which was 18 days af-
ter the end of the stay-at-home order, there was no 
evidence of an increase in hospitalizations or contact 
rate due to decreased restrictions, noting that because 
of the ≈13-day lag between infection and hospitaliza-
tion, this estimate reflects transmission through May 
2. A month later on June 16 (fit 4), a greater decrease 
in transmission was estimated for phase 3 (social dis-
tancing = 85%), and the estimated decrease in contact 
rates during safer-at-home (phase 4) was 90%. Esti-
mated Re decreased to 0.6 during phase 4.

Estimated Reduction in Hospitalizations from  
Decreased Contacts
As of June 16, a total of 5,272 COVID-19 hospital-
izations in Colorado had been reported to CEDRS, 
and EMResource data strongly suggested under-
reporting of COVID-19 hospitalizations to CEDRS 
during April and May. Using CEDRS and EMRe-
source data, we found that the SEIR model esti-
mated a cumulative of 5,344 COVID-19 hospital-
izations in Colorado by Jun 16 (Figure 2, panel D). 

	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 27, No. 9, September 2021	 2317

Figure 2. Observed (black 
bars) versus model-estimated 
(green line) number of reported 
coronavirus disease cases 
(panels A, B) and hospitalizations 
(panels C, D), Colorado, USA, 
2020, based on models calibrated 
at 4 points in the early months 
of the epidemic. Model-based 
estimates were generated 
by using an age-structured 
susceptible-exposed-infected-
recovered model, and best-fit 
parameter values were estimated 
based on observed data shown. 
Reported cases are shown by 
using symptom onset date or 
report date minus 7 days if onset 
date was missing, in accordance 
with onset to report lags for 
Colorado during this period.
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Assuming that no measures had been taken to alter 
individual behavior or risk perception (social dis-
tancing 0% throughout), we estimate that >173,000 
hospitalizations would have occurred by that same 
date, suggesting that ≈97% of potential hospitaliza-
tions were avoided as a result of decreases in effec-
tive contacts.

Projecting Hospitalizations and ICU Need
We provide projected hospitalizations (Figure 4) and 
ICU need (Figure 5) that were generated from each 
of the 4 model fits. Fit 1, produced with the least 
available data, substantially overestimated hospital-
izations and ICU need compared with later fits and 
predicted that ICU capacity would be exceeded even 
if 80% contact reduction was achieved. As data ac-
cumulated and transmission slowed in the state, the 
estimated peaks under all possible levels of social dis-
tancing decreased and shifted later in the year, and 
projections indicated contact reduction would need 
to remain at or above ≈70% to prevent exceeding  
ICU capacity.

Association between Changes in Mobility  
and Contact Rates
Residents of Colorado decreased activity outside the 
home starting in early March (Figure 6, panel A). The 
trends in mobility data suggest that, on average, the 
time spent away from home decreased by ≈60% from 

February to mid-April. Time away from home began 
to increase in late April, before the end of statewide 
stay-at-home orders, and increased steadily through 
June. Mobility metrics initially reinforced estimated 
social distancing levels, and percent reduction in time 
away from home coincided with estimated trans-
mission reduction resulting from social distancing 
(Figure 6, panel B). However, increased time away 
from home in late April contrasted with estimated 
infectious contact reduction, which remained high 
through June. We compared hospitalizations simu-
lated from mobility data to observed and observed a 
relatively strong association up until late April (Fig-
ure 6, panel C). After that, the modeled and observed 
trends decoupled, indicating that other behaviors or 
interventions not captured by mobility played a ma-
jor role in transmission reduction.

Discussion
We used an SEIR transmission model, calibrated to lo-
cal COVID-19 case and hospital data, to estimate the 
collective impact of individual behaviors and public 
policy measures in reducing COVID-19 transmission 
in Colorado during 2020, providing time-sensitive es-
timates of the pandemic trajectory to policy-makers 
to assist in decision-making. COVID-19 policies in-
troduced during March and April were followed by 
substantial decreases in contact rates and suppres-
sion of the Re well below 1, in agreement with other  
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Figure 3. Estimated Re over 
time, Colorado, USA 2020, 
based on susceptible-exposed-
infected-recovered models fit 
to data at 4 time points in the 
early months of the epidemic. 
The reproductive number was 
estimated from model output at 
the time of each fit. A) Fit 1 on 
April 3; B) fit 2 on April 16; C) 
fit 3 on May 15; D) fit 4 on June 
16. Dashed lines indicate an 
Re of 1, below which the rate 
of new infections decreases 
and above which the rate of 
new infections increases. Re, 
effective reproductive number.
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studies of nonpharmaceutical interventions to de-
crease SARS-CoV2 transmission (31–34). These val-
ues remained low after the stay-at-home order was 
lifted and mobility increased.

The continued suppression of transmission might 
be explained, in part, by transmission control policies 
that remained in effect and/or were implemented 
after stay-at-home ended: outbreak prevention and 
control strategies in long-term care facilities persist-
ed, capacity limits were implemented for businesses 
and restaurants, and mass gatherings were banned. 
Moreover, the state reopened slowly during April 
and May. Given the typical lags between infection 
and hospitalization, the estimates do not capture the 
impact of reopening measures implemented during 
or after late May (e.g., restaurant openings).

Mobility, assessed by using mobile-device data, 
generally reflected state-level policy during March–
June but mirrored transmission only in the early 
months of the pandemic. Mobility decreased rapidly 
in March in concert with early transmission control 
policies and the statewide stay-at-home order, and 
mobility increased as social distancing policies were 
relaxed. Consistent with our findings, others have 
found that US population mobility was reactive to 
policy during March: greater perceived disease prev-
alence and governmental stay-at-home orders re-
sulted in less mobility and social interaction (35–37). 
However, in Colorado, lifting stay-at-home orders 

and concurrent increases in mobility do not appear 
to have led to increased transmission, indicating the 
limitations in using mobility data to predict transmis-
sion. These results warrant further investigation in 
other contexts to help clarify the utility of mobility 
data in SARS-CoV-2 forecasting, particularly during 
reopening phases.

Mobility data can be used to estimate when and 
where persons are congregating, a precondition for 
transmission, but do not sufficiently capture behav-
iors such as mask wearing, physical distancing, or 
moving activities outside. Those individual behav-
iors can play a critical role in spreading infections, 
and understanding what drives those behaviors can 
improve epidemic response. Public perception of 
and reaction to perceived risk is multifactorial, and, 
although clearly influenced by policy, in a time of 
heightened fear, local policy probably plays only a 
partial role in determining risk-reducing behavior. 
Rapid and frequent introduction of COVID-19–re-
lated policy measures and public communication by 
government officials at the national, state, and local 
scales probably increased fear and public risk percep-
tion regarding COVID-19 transmission, and contrib-
uted to adoption of transmission-reducing behaviors 
before the start of and beyond the end of stay-at-home 
orders (38). Conversely, persons might perceive de-
creased risks and abandon risk-reducing behaviors 
when transmission control policies are relaxed, a  
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Figure 4. Projected 
coronavirus disease 
hospitalizations, Colorado, 
USA, 2020, if current trajectory 
continued (black line) and for 
a range of social distancing 
scenarios (colored lines) 
generated by models calibrated 
at 4 time points during April‒
June (fit 1: Apr 3; fit 2: April 16; 
fit 3: May 15; fit 4: June 16). 
Current trajectory was based 
on estimated parameters 
generated for each fit. Social 
distancing is modeled as 
a percent reduction in the 
contact rate (from baseline), 
and changes in social 
distancing are introduced 2 
weeks after model fitting date. 
All other fitted parameters are 
held at the estimated values 
for each fit. Because peak 
hospitalization estimates from 
fit 1 were substantially higher 
than estimated for later fits, the 
y-axis is scaled to 50,000 as 
opposed to 25,000 for fits 2–4. Numbers in parentheses are current values. 
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phenomenon we suspect contributed to an increase in 
COVID-19 transmission in Colorado during July 2020 
(39). Research on how risk perception and behavior 
fluctuates in relationship to the epidemic trajectory 
can improve communication and policy making.

Real-time estimation of contact reduction enabled 
us to respond to urgent requests to actively inform 
rapidly changing public health policy amidst a pan-
demic. In early stages, the urgent need was to flatten 
the curve (Figure 4, panels A, B; Figure 5, panels A, 
B). Policymakers used initial projections to support 

decision making on the timing and scope of proposed 
social distancing policies and to compare potential 
healthcare need and existing capacity under different 
scenarios. Once infections began to decrease, there 
was interest in the degree of increased social con-
tact that could be tolerated as the economy reopened 
without leading to overwhelmed hospitals (Figure 4, 
panels C, D; Figure 5, panels C, D). Model estimates 
were used to evaluate the impact of past policies and 
to forecast the impact of future proposed interven-
tions, including permutations of layered policies or 
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Figure 5. Projected coronavirus 
disease ICU needs, Colorado, 
USA, 2020, if current trajectory 
continues (black line) and for 
a range of social distancing 
scenarios (colored lines) 
generated by using models 
calibrated at 4 time points 
during April‒ June (fit 1: Apr 3; 
fit 2: April 16; fit 3: May 15; fit 
4: June 16). Current trajectory 
was based on estimated 
parameters generated for each 
fit. Social distancing is modeled 
as a percent reduction in the 
contact rate from baseline, and 
changes in social distancing 
are introduced 2 weeks after 
model fitting date. All other 
fitted parameters are held at the 
estimated values for each fit. 
Because ICU estimates from fit 
1 were substantially higher than 
for later fits, the y-axis is scaled 
to 20,000 as opposed to 10,000 
for fits 2–4. Colorado estimated 
ICU capacity (1,800 beds) is 
indicated by the dashed gray horizontal line. ICU, intensive care unit. Numbers in parentheses are current values. 

Figure 6. Changes in population mobility before and after emergence of coronavirus disease, Colorado, USA, 2020, and comparison 
between mobility and estimated social distancing. A) Changes in mobility measured by the number hours spent away from home per 
day (source: SafeGraph, https://www.safegraph.com). Gray line indicates daily observations, and black line indicates a smoothed line 
using locally estimated scatterplot smoothing in R (https://www.r-project.org). The ribbon at the bottom indicates the 4 social distancing 
phases. B) Comparison between susceptible-exposed-infected-recovered model-estimated social distancing (colored boxes) and 
reduction in mobility relative to the preintervention period, January 29–February 15 (colored lines). Colors correspond to the 4 social 
distancing phases. Reductions in mobility are calculated as percentage decreases in time away from home relative to pre-epidemic 
baseline. C) Observed hospitalization data (red) and the simulated hospitalizations based on time away from home relative to a baseline 
mean during January 29–February 15. In the simulation, it is assumed there is no self-isolation of symptomatic infectious, no mask 
wearing, and no other transmission reduction to highlight the role of the mobility data in the simulation. P, phase.
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interventions. Using locally derived estimates en-
abled policymakers to evaluate potential disease con-
trol strategies that were relevant to the current trans-
mission trends in Colorado. For example, as the age 
distribution shifted within the epidemic in Colorado, 
estimates with contact rates that varied by age group 
were produced and used to evaluate policies or in-
terventions targeted to specific age groups, such as 
return to school and alcohol last call policies.

A key challenge we faced was generating pro-
jections of hospital and critical care needs with lim-
ited data and rapidly evolving science. Early model 
estimates were imprecise because data were sparse 
and poor quality, leading projections to overesti-
mate hospital needs. Estimates and, consequently, 
projections improved with greater data quantity 
and quality. Another challenge was the need to gen-
erate estimates under extreme time constraints. We 
designed a preliminary model in a matter of days 
and adapted it regularly to accommodate new data 
streams and science. The need for efficiency led to 
tradeoffs: for example, we did not account for age-
specific contact rates (40). We present this material 
not as a finished work but to illustrate how models 
can be constructed and adapted in real time to in-
form critical policy questions.

The model findings were provided weekly to 
decision-makers in Colorado by written reports and 
briefings. These collaborative interactions provided 
an opportunity to review findings and define projec-
tion scenarios useful for decision-making. The rap-
idly developed, locally calibrated transmission model 
provided timely evidence of a moderate decrease in 
transmission in Colorado after an early transmission 
control policy began and a substantial decrease in the 
contact rate after stay-at-home orders that persisted 
after these policies were partially relaxed. Decreases 
in transmission mirrored changes in mobility through 
the end of stay-at-home, at which point mobility 
ceased to be a clear proxy for transmission. Locally 
calibrated models have local credibility and can be 
used to provide time-sensitive, tailored information 
to policymakers to assist their decision-making.
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