Financial support for conducting the research was provided by the Influenza Division, National Center for Immunization and Respiratory Diseases, CDC (grant no. 5U01GH002133-04-00). CDC also participated in the design of the study, analysis and interpretation of data, writing of the report, and decision to submit the article for publication.

About the Author
Ms. Otieno is an assistant principal research scientist at the Kenya Medical Research Institute, Centre for Global Health Research. Her primary research interests are infectious diseases, specifically maternal and child health.

References

Address for correspondence: Nancy A. Otieno, Kenya Medical Research Institute, Centre for Global Health Research, PO Box 1578-40100, Kisumu, Kenya; email: notieno@kemricdc.org, nancyotieno@gmail.com.

Genomic Evolution of SARS-CoV-2 Virus in Immunocompromised Patient, Ireland

Maureen Lynch,1 Guerrino Macori,1 Séamus Fanning, Edel O'Regan, Eoin Hunt, Dermot O’Callaghan, Brian McCullagh, Cormac Jennings, Anne Fortune

Author affiliations: Mater Misericordiae University Hospital, Dublin, Ireland (M. Lynch, E. O'Regan, E. Hunt, D. O’Callaghan, B. McCullagh, C. Jennings, A. Fortune); University College Dublin-Centre for Food Safety School of Public Health, Physiotherapy & Sports Science, Dublin (G. Macori, S. Fanning)

DOI: https://doi.org/10.3201/eid2709.211159

We examined virus genomic evolution in an immunocompromised patient with prolonged severe acute respiratory syndrome coronavirus 2 infection. Genomic sequencing revealed genetic variation during infection: 3 intrahost mutations and possible superinfection with a second strain of the virus. Prolonged infection in immunocompromised patients may lead to emergence of new virus variants.

The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to substantial illness and death in immunocompromised patients (1). Outcomes for patients with hematologic malignancies can be poor because of immune suppression associated with cancer itself and chemotherapy and radiotherapy regimens used to treat these cancers (2).

Persistent shedding of SARS-CoV-2 RNA has been described since early in the pandemic; quantitative reverse transcription PCR (qRT-PCR) results have remained positive for 63 days (3). Recent studies of immunocompromised patients have detected infectious virus until 143 days after diagnosis (4–6). Phylogenetic analysis showed that single-nucleotide polymorphisms (SNPs) could be used to elucidate the transmission routes of SARS-CoV-2 in communities (7). Moreover, it has been demonstrated that intrahost single-nucleotide variants are restricted to specific lineages (8); however, no clear evidence supports a link between prolonged infection and intra-evolutionary dynamics (9).

We report a case of a prolonged clinical infection with persistent virus shedding in a patient with functional B-cell deficiency, hypogammaglobulinemia,

1These authors contributed equally to this article.
and COVID-19. We describe the sequence polymorphisms over time among the 9 whole-virus genome sequences obtained by following the ARTIC tiling-amplicon approach (https://artic.network/resources/ncov/ncov-amplicon-v3.pdf) and using the Illumina MiSeq platform as described (7).

In April 2020, a 52-year-old woman in Dublin, Ireland, sought emergency care for a 5-day history of fever, diarrhea, and fatigue. Five months earlier, she had received a diagnosis of stage 4, grade 1 follicular lymphoma and had since completed 3 cycles of chemotherapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and obinutuzumab (B-cell monoclonal antibody); the last therapy cycle had been completed 7 days before the emergency department visit. During the emergency department visit, SARS-CoV-2 was detected on a nasopharyngeal swab sample by qRT-PCR (Roche FLOW Flex, https://diagnostics.roche.com) with a cycle threshold (Cₜ) value of 25.04. Chest radiographs showed a typical pattern for COVID-19 infection. The patient received hydroxychloroquine and azithromycin for 5 days. At the time of admission, she had hypogammaglobulinemia and received intravenous immunoglobulin every 4 weeks as supportive therapy.

During her 100-day hospital stay, the patient’s clinical course of illness was protracted, with fevers and oxygen requirements, requiring a 17-day stay in a critical care unit (Appendix, https://wwwnc.cdc.gov/EID/article/27/9/21-1159-App1.pdf). In the hospital, the patient was in a single room with transmission-based air-handling precautions.

During her entire hospital stay, SARS-CoV-2 was detected at varying Cₜ values in nasopharyngeal swab samples, except for days 31 and 85 when SARS-CoV-2 was not detected. Bronchoalveolar lavage (BAL) performed on day 95 to exclude other pathogens detected SARS-CoV-2 (C, 30). Serologic testing did not detect antibodies to SARS-CoV-2 (Roche anti-SARS-CoV-2) on days 30, 84, and 103.

The patient was tested 17 times, and we sequenced all samples that were positive by qRT-PCR with Cₜ <32.8. All 9 samples that underwent whole-virus genome sequencing (Appendix Figure) belonged to clade 20B, lineage B.1.1. SNP analysis clustered these genomes into 3 groups. Genomes sequenced from the positive samples taken on days 5, 19, and 26 were indistinguishable at the sequence level (Figure). A sample taken on day 47 showed the first mutation event; 3 point mutations were identified in the whole-virus genome sequence data until day 76 after diagnosis. On day 82, genome analysis detected a new SNP (second mutation event). Sequencing of the BAL sample taken on day 95 detected a different set of sequence polymorphisms that most likely originated from a new infection event. SNP analysis indicated 11 point mutations (Appendix Table 1) giving rise to 3 amino acid substitutions in the gene coding for the spike protein (S:S50L, S:A653V, and S:L1186F).

Figure. Sequence polymorphisms detected over time among the 9 whole-virus genome sequences from an immunocompromised patient with prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, Ireland. The mutations are represented by different colors; gray lines indicate the polymorphisms common to the 9 whole-virus genome sequences compared with the reference whole-virus genome (GenBank accession no. MN908947, SARS-CoV-2 isolate Wuhan-Hu-1). The infection was confirmed on day 5 of infection (at admission to the emergency department), and the sequencing demonstrated stability of the virus genome sequence on days 19 (T19) and 26 (T26) after the first detection. Green indicates mutations detected in the sample at 47 days after first the emergency department admission (T47), T61, T68, and T76. At sample time T82, the strain exhibited a fourth mutation (pink) corresponding to the second mutation event. On day 95, a bronchoalveolar lavage sample from the patient was positive for SARS-CoV-2 and the whole-virus genome had a different set sequence polymorphism that probably originated from a new infection event. GISAID (https://www.gisaid.org) identification numbers are provided.
SARS-CoV-2 shedding in this patient with lymphoma, ongoing fevers, and oxygen requirements for 6 months was prolonged. The antibody-mediated ablation of B-cell precursors by B-cell directed monoclonal antibody therapy was most likely responsible for the prolonged virus shedding. This effect, combined with hypogammaglobulinemia, explains the lack of seroconversion and the protracted clinical course.

Sequential sequencing demonstrated intrahost mutations of ≥2 events (Figure) and accumulation of 4 SNPs. Analysis of a BAL sample taken on day 95 showed 11 point mutations giving rise to 3 aa substitutions in the gene coding for the spike protein. This observation is in accordance with findings of a recent study that detected 7 new mutations in a second virus strain in an immunocompromised patient (10). The BAL findings, along with ongoing symptoms, are suggestive of probable superinfection with cohabitation of 2 virus strains. However, considering that this was the only BAL sampled, we cannot exclude the possibility that the origin of this strain is the result of a different evolutionary path of the original population responsible for the first infection.

The superinfection that we describe was probably a nosocomial infection despite the transmission-based precautions taken in the patient’s single room during her hospital stay. However, no sequence data from other patients or healthcare workers on the ward could be explored to identify the source of infection.

Our report highlights the complex clinical course of SARS-CoV-2 in immunocompromised patients. This genomic analysis identified the ability of the virus to mutate and possibly coexist with another strain, resulting in superinfection in this immunocompromised patient.

Acknowledgment
We thank the patient for allowing this case report to be published.

About the Author
Dr. Lynch is a clinical microbiologist in the Mater Misericordiae University Hospital, Dublin, Ireland, with a special interest in molecular diagnostics of respiratory and enteric viruses. Dr. Macori is a research scientist-bioinformatician at University College Dublin, working on the application of novel sequencing technologies for genome diagnosis and epidemiology of major pathogens, including SARS-CoV-2, in Ireland.

References
Genomic Evolution of SARS-CoV-2 Virus in Immunocompromised Patient, Ireland

Appendix

Patient’s Clinical Course

A 52-year-old female presented to the Emergency Department (ED) in April 2020, with a five-day history of fever, diarrhea and fatigue. The patient was diagnosed with stage 4, grade 1 follicular lymphoma 5 months earlier, and had completed 3 cycles of chemotherapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and obinutuzamab (B-cell monoclonal antibody), the last cycle being completed 7 days before presentation to the ED. SARS-CoV-2 was detected by RT-qPCR on a nasopharyngeal swab, with a cycle threshold (Ct) value of 25.04 using the Roche flowflex platform. Chest X-ray on admission showed bilateral peripheral airspace opacities in the mid- to lower-zones with a typical pattern for COVID-19 pneumonia. The patient was treated with hydroxychloroquine and azithromycin for 5 days. On admission, the patient had hypogammaglobulinemia, and received intravenous immunoglobulin (IVIG) every 4 weeks as supportive therapy, during the hospital admission.

The patient received ward-based care for 21 days, with ongoing fevers, and was transferred to the Critical Care Unit with increasing oxygen requirements. Computed tomography (CT) of the thorax reported progressing covid pneumonitis. The patient was managed with non-invasive ventilation and self-proning. Following 17 days in Critical Care, the patient was transferred to the ward, where she remained in a single room, with transmission based precautions for the hospital stay.

In all the patient remained in hospital for 100 days, with intermittent fevers, and oxygen requirements. SARS-CoV-2 was detected in NP swabs taken during the entire admission with varying Ct values, except for days-31 and −85, when SARS-CoV-2 was not detected. A bronchoalveolar lavage (BAL) was performed on day 95, to exclude other viruses, bacteria, and fungi. SARS-CoV-2 was detected (Ct value 30) in the BAL. Serological testing did not detect
antibodies to SARS-CoV-2 (Roche Anti-SARS-CoV-2) on days 30, 84, and 103. Following discharge, the patient remained on home oxygen, with intermittent fevers until 6 months after diagnosis. She continued to receive IVIG every 4 weeks. A PET CT scan for disease staging reported good partial remission of lymphoma, and further doses of immunochemotherapy were withheld.

The decision to prolong transmission-based precautions during the hospital stay, beyond the recommended 20 days post symptom onset, was based on persistent fevers, and oxygen requirements. Repeated detection of SARS-CoV-2 in respiratory samples meant a test-based strategy could not be used, hence transmission-based precautions remained for the duration of hospital admission (I).

Sample preparation for sequencing bioinformatics and statistical analysis

Samples were prepared for sequencing starting from cDNA synthesis (reverse transcription) using LunaScript RT SuperMix (New England Biolabs, Ipswich, UK). The sequencing library were obtained following ARTIC tiling-amplicon approach, prepared using the NEBNext Ultra II kit (New England Biolabs, Ipswich, UK) and sequenced on an Illumina MiSeq using 300-cycle v2 reagent kits (Illumina, Cambridge, UK). Raw reads were mapped to reference sequence using Bowtie 2 (2) and SAMtools (3) was used for variants calling and generate the consensus sequences (GenBank number, MN908947.3). The read coverage was estimated using samtools flagstat tool from the SAMtools software package (3). The libraries generated from the nine samples yield at least 337,274 (lowest value among the 9 samples) mapped reads (primer-trimmed sequences) and the genome coverage (completion) was on average 98.34% to the reference strain (MN908947.3) for the nine samples, with values between 97.64 and 99.18% (Appendix Table 2). The average coverage for the nine samples was 4,883, with values ranging between 3,778 and 5,454 (Appendix Table 2). Comparative sequence analysis was conducted by phylogenetic inference maximum likelihood (ML) method with RAxML (4) using the multiple sequences aligned by MAFFT (5). Clades and variants were assigned respectively using Nextstrain (6) and Pangolin COVID-19 lineage assigner (http://pangolin.cog-uk.io/). All the sequences generated were submitted to GISAID (7) and the ID (gisaid_epi_isl) are presented in Appendix Table 2.
References

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nucleotide mutation†</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI_ISL_248 4141</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>EPI_ISL_248 4144</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>EPI_ISL_248 4145</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>A11054G</td>
<td>G11083T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G23608T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>EPI_ISL_248 4146</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>A11054G</td>
<td>G11083T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G23608T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>EPI_ISL_248 4147</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>A11054G</td>
<td>G11083T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G23608T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>EPI_ISL_248 4148</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>A11054G</td>
<td>G11083T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G23608T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>EPI_ISL_248 4150</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>A11054G</td>
<td>G11083T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G23608T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>EPI_ISL_248 4151</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>C18252T</td>
<td>C19264T</td>
<td>C21711T</td>
<td>ND</td>
<td>C23520T</td>
<td>ND</td>
<td>C25118T</td>
<td>C26333T</td>
<td>C26895T</td>
</tr>
<tr>
<td>EPI_ISL_248 4152</td>
<td></td>
<td>C678T</td>
<td>G2626A</td>
<td>G4866T</td>
<td>C6402T</td>
<td>Not present</td>
<td>ND</td>
<td>C18252T</td>
<td>C19264T</td>
<td>C21711T</td>
<td>ND</td>
<td>C23520T</td>
<td>ND</td>
<td>C25118T</td>
<td>C26333T</td>
<td>C26895T</td>
</tr>
</tbody>
</table>

*Virus isolates are denoted by the GISAID (https://www.gisaid.org)–assigned identification number, and nucleotide polymorphisms and their positions, across the SARS-CoV-2 genome are shown. E, envelope protein; ND, not detected; M, membrane protein; ORF, open reading frame; S, spike protein; SARS-CoV-2, severe acute respiratory coronavirus 2.

†Nucleotide mutations are shown in the following format: nucleotides in the reference strain (A, adenine; C, cytosine; G, guanine; T, thymine); genomic position in the sequence; and code of the nucleotide detected in the genome of the virus sequenced.

‡Amino acid substitution at protein level are shown in the following the format: protein code (ORF1α, ORF1β, S, E and M); code of the amino acid in the reference strain (A, alanine; V, valine; P, proline; L, leucine; S, serine; G, glycine, F, phenylalanine; T, threonine; H, histidine; Y, tyrosine); and code of the amino acid detected in the genome of the virus sequenced.
Appendix Table 2. The assigned identification numbers are presented along with the date of sampling the lineage as assigned by Pangolin and quality values (average coverage and % of coverage). The average coverage is calculated at the level of the single base pair and the % of coverage is the percentage of completion of the consensus sequences to the reference strain (MN908947.3).

<table>
<thead>
<tr>
<th>ID*</th>
<th>Date sampling</th>
<th>Average coverage</th>
<th>% Coverage</th>
<th>Pangolin lineage</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI_ISL_2484141</td>
<td>09/04/2020</td>
<td>5,454</td>
<td>99.12</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484144</td>
<td>23/04/2020</td>
<td>4,875</td>
<td>97.76</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484145</td>
<td>27/04/2020</td>
<td>5,446</td>
<td>98.31</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484146</td>
<td>21/05/2020</td>
<td>5,319</td>
<td>98.73</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484147</td>
<td>04/06/2020</td>
<td>5,219</td>
<td>99.18</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484148</td>
<td>11/06/2020</td>
<td>4,319</td>
<td>98.21</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484150</td>
<td>19/06/2020</td>
<td>4,570</td>
<td>97.74</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484151</td>
<td>25/06/2020</td>
<td>3,778</td>
<td>97.64</td>
<td>B.1.1</td>
</tr>
<tr>
<td>EPI_ISL_2484152</td>
<td>08/07/2020</td>
<td>4,967</td>
<td>98.36</td>
<td>B.1.1</td>
</tr>
</tbody>
</table>

*GISAID (https://www.gisaid.org) ID numbers.

Appendix Figure. Trend of the CT values after the first admission (T0) to the emergency department of the patient. The points highlight the SARS-CoV-2 Whole virus Genome Sequences (WvGS) that were obtained for this study.