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Deaths associated with severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) have 

raised concerns that contact with the corpses of de-
ceased persons might pose a risk for transmitting in-
fection (1). Nasopharyngeal SARS-CoV-2 RNA loads 
were shown to remain stable up to 20 days postmor-
tem (2), and the maintained infectivity of corpses 
has sporadically been examined (2–4). In contrast, 
body surfaces of corpses have been considered non-
infectious (5). Systematic studies on the infectivity of 
corpses and predictive values of standard diagnostic 
procedures remain scarce.

For this study, we prospectively collected naso-
pharyngeal swab specimens from 128 SARS-CoV-2 
RNA-positive and 72 RNA-negative corpses <14 
days postmortem to assess infectivity and predictive 
values of virologic parameters (Table). We excluded 
corpses exhibiting advanced putrefaction. For initial 
assessment, we determined RNA loads using quan-
titative reverse transcription PCR (qRT-PCR) (Ap-
pendix, https://wwwnc.cdc.gov/EID/article/28/ 
1/21-1749-App1.pdf).

We found SARS-CoV-2 RNA up to 325 hours 
postmortem, but RNA loads did not correlate with 
1These senior authors contributed equally to this article. 

We investigated the infectivity of 128 severe acute re-
spiratory disease coronavirus 2–associated deaths and 
evaluated predictive values of standard diagnostic proce-
dures. Maintained infectivity (20%) did not correlate with 
viral RNA loads but correlated well with anti-S antibody 
levels. Sensitivity >90% for antigen-detecting rapid diag-
nostic tests supports their usefulness for assessment.
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the postmortem interval (PMI; r = 0.003, p >0.99)  
(Figure, panel A). RNA loads were comparatively 
high (median 7.0 × 106 copies/mL, interquartile range 
[IQR] 5.5 × 104–5.2 × 107 copies/mL) (Figure, panel B) 
and in some cases exceeded loads in the acute phase 

of the disease (6), possibly because of postmortem  
mucosal softening and higher exfoliation of tissue 
during sample collection.

Virus isolation proved infectivity was maintained 
in 26/128 (20%) corpses (Appendix). PMI (median 13 

 
Table. Baseline characteristics of corpses received by the Institute of Legal Medicine, Hamburg, Germany, 2020–2021* 

Characteristic 
SARS-CoV-2 RNA positive,†  

n = 128 
SARS-CoV-2 RNA 
negative,† n = 72 Total, n = 200 

Age, y, median (IQR) 83.5 (71.5–89.1) 81.0 (73.0–87.0) 82.3 (72.9–88.5) 
Sex 

   

 M 71 (55.5) 36 (50.0) 107 (53.5) 
 F 57 (44.5) 36 (50.0) 93 (46.5) 
Place of death 

   

 Home 28 (22.0) 30 (41.7) 58 (29.1) 
 Nursing home 38 (29.9) 3 (4.2) 41 (20.6) 
 Hospital 39 (30.7) 25 (34.7) 64 (32.2) 
 ICU 20 (15.7) 10 (13.9) 30 (15.1) 
 Other  2 (1.6) 4 (5.6) 6 (3.0) 
Postmortem interval,‡ h, median (IQR) 8.7 (5.3–82.6) 4.9 (3.5–8.8) 7.0 (4.3–49.9) 
Putrefactive changes 11 (8.9) 1 (1.4) 12 (6.1) 
SARS-CoV-2 RNA load,¶ copies/mL, median (IQR) 7.0 x 106 (5.5 × 104–5.2 x 107) Below LOD Not applicable 
*Values are no. (%) except as indicated. In case of missing data points, valid percentages are indicated. ICU, Intensive care unit; LOD, limit of detection; 
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 
†B.1.1.7 variants (2/128) identified by multiplex-typing PCR (5). SARS-CoV-2–associated deaths were tested in a multiplex typing PCR for SARS-CoV-2 
spike variants. 
‡Interval from time of death until initial sampling and cooling at 4°C. 

 

Figure. Overview of 128 
consecutive records of SARS-
CoV-2–associated deaths received 
by the Institute of Legal Medicine, 
Hamburg, Germany, 2020–2021. 
A) SARS-CoV-2 RNA loads by 
postmortem intervals. Spearman 
correlation was performed; 
estimates and 95% CI are shown. 
B) Postmortem intervals, viral 
RNA loads, quantitative (S), 
and qualitative (NC) antibody 
levels compared among culture-
positive (+) and culture-negative 
(–) corpses. Comparisons were 
performed using Mann-Whitney-U 
or χ2 testing, as appropriate. 
Median and interquartile ranges 
are shown. Horizontal dotted lines 
indicate cutoff value. C) Probability 
of positive antigen-detecting rapid 
diagnostic test results depending 
on viral RNA loads calculated 
by binomial logistic regression. 
Robust estimates with 95% CI are 
shown. Vertical red line indicates 
95% PoD with the corresponding 
viral RNA load. Ag-RDT, antigen-
detecting rapid antigen test; COI, 
cut-off index; NC, nucleocapsid; 
NS, not significant; PoD, probability 
of detection; S, spike; SARS-
CoV-2, severe acute respiratory 
syndrome coronavirus 2.
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hours, range 3–325 hours) and SARS-CoV-2 RNA 
load (1.4 × 107 copies/mL, IQR 3.7 × 104–3.3 × 108) 
among culture-positive corpses did not differ signifi-
cantly from PMI (median 8 hour, range 0–275 hour; p 
= 0.38) and RNA loads (7.0 × 106 copies/mL, IQR 5.8 
× 104–3.9 × 107 copies/mL; p = 0.14) among culture-
negative corpses (Figure, panel B). We successfully 
isolated virus from samples with comparatively low 
amounts of RNA (<1 × 104 copies/mL), in contrast 
with previous findings among living patients (6). We 
observed putrefactive changes in no culture-positive 
corpses compared with in 11/98 (11%) culture-nega-
tive corpses (χ2 = 3.20; p = 0.11), indicative of poten-
tially decreased infectivity.

We confirmed seroconversion in 18/44 (41%) 
blood samples, 15/43 (35%) anti-nucleocapsid posi-
tive and 17/44 (39%) anti-spike positive (range <0.4–
1066.0 U/mL; Appendix). Levels of anti-spike anti-
bodies, representing neutralizing antibody levels (7), 
were not significantly correlated with PMI (r = 0.07; 
p = 0.64), but were well correlated with viral RNA 
levels (r = –0.70; p <0.0001). Anti-nucleocapsid anti-
bodies were found in only 1/8 (13%) culture-positive 
compared with 14/35 (40%) culture-negative corpses 
(χ2 = 2.17; p = 0.23) (Figure, panel C). Moreover, anti-
spike antibody levels differed significantly (p = 0.04) 
between culture-positive (1.22 U/mL, SD 2.32) and 
culture-negative (86.85 U/mL, SD 240.56) corpses, 
indicative of inverse association of SARS-CoV-2–spe-
cific antibody levels with infectivity (Figure, panel C).

Antigen-detecting rapid diagnostic tests (Ag-RDTs) 
are considered adequate alternative swift diagnos-
tic tools in living patients (8,9), but knowledge about 
their postmortem applicability and reliability remains 
scarce. We tested Ag-RDTs from 3 manufacturers and 
found excellent performance for postmortem use (Ap-
pendix Table 1). Compared with qRT-PCR results, 
for the Panbio COVID-19 Ag Rapid Test Device (Ab-
bott, https://www.abbott.com), sensitivity was 80.3% 
(95% CI 72.3%–86.4%) and specificity 100.0% (95% CI 
95.0%–100.0%); for the SARS-CoV-2 Rapid Antigen Test 
(Roche https://www.roche.com), sensitivity was 86.4% 
(95% CI 79.1%–91.9%) and specificity 98.6% (95% CI 
93.0%–100.0%); and for the SARS-CoV-2 Antigen Rapid 
Test (MEDsan https://www.medsan.eu), sensitivity 
was 84.1% (95% CI 76.6%–90.0%) and specificity 95.8% 
(95% CI 88.0%–99.0%) (Appendix Figures 1, 2).

We found SARS-CoV-2 RNA load correlated with 
Ag-RDT positivity in univariate and multivariate 
analyses (p<0.001), thereby confirming their predic-
tive value (Figure, panel C; Appendix Table 2). Sub-
group analyses of corpses with >1 × 106 RNA copies/
mL (n = 74) revealed 100% (95% CI 95.1%–100.0%) 

sensitivity in Abbott (n = 74) and Roche and MEDsan 
(n = 73 each) assays. In contrast, neither PMI (p = 0.34) 
nor putrefactive changes (p = 0.90) were predictive 
for testing positive in Ag-RDTs (exemplarily for the 
MEDsan assay; Appendix Table 2). Ag-RDT sensitiv-
ity in infectious corpses was 92.3% (95% CI 74.9%–
99.1%) for Abbott, 96.2% (95% CI 80.4%–99.9%) for 
Roche, and 96.2% (95% CI 80.4%–99.9%) for MEDsan. 
We detected 2 SARS-CoV-2 variants of concern de-
spite relatively low viral RNA loads (4.83 log10); the 
2 samples tested positive by Abbott and Roche but 
were missed by MEDsan.

The first limitation of our study is that blood 
was not available from all corpses, and the serologic 
assays and Ag-RDTs used are not approved for ca-
daveric samples. Furthermore, because of a shortage 
of reagents and supplies, we had to use different 
tests to quantify RNA, and slight deviations cannot 
be ruled out.

In summary, we show that cadavers from SARS-
CoV-2–associated deaths remain infectious long 
after death in a considerable proportion of cases. 
Postmortem infectivity does not correlate with PMI 
or viral RNA load but correlates with the absence of 
virus-specific antibodies. Ag-RDTs performed well, 
enabling rapid on-site detection. Because previous 
studies among living patients indicate that Ag-RDTs 
reliably detect all SARS-CoV-2 variants (10), we be-
lieve that our results on postmortem Ag-RDTs use 
can contribute to crisis management in severely af-
fected regions and increase safety in the medical sec-
tor worldwide.
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Severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) lineage B.1.617 (1) and 3 of its 

sublineages, B.1.617.1 (Kappa), B.1.617.2 (Delta), 
and B.1.617.3, were first detected in India. The 
Delta variant started circulating widely in differ-
ent continents beginning in late March 2021 (2,3). 
It was initially classified as a variant of interest in 
April 2021 and then reclassified as a variant of con-
cern in May 2021.

Hong Kong adopted an elimination strategy to 
control coronavirus disease (COVID-19). A previ-
ous study reported the use of stringent measures 
(e.g., mandatory COVID-19 testing, travel restric-
tions) to detect and prevent SARS-CoV-2 importa-
tion by COVID-19–positive travelers (4), thereby 
reducing the risk of new SARS-CoV-2 introduc-
tions, and also showed that regional and interna-
tional airports could be useful sentinel surveillance 
sites to monitor SARS-CoV-2 circulation. In this 
study, we tested the feasibility of using surveil-
lance strategies similar to those used in that study 
to monitor sequence diversity of Delta variant 

We sequenced ≈50% of coronavirus disease cases 
imported to Hong Kong during March–July 2021 and 
identified 70 cases caused by Delta variants of severe 
acute respiratory syndrome coronavirus 2. The genomic 
diversity detected in Hong Kong was similar to global 
diversity, suggesting travel hubs can play a substantial 
role in surveillance.


