Novel Hendra Virus Variant Detected by Sentinel Surveillance of Horses in Australia

Appendix

Supplementary Methods

Viral Isolation

Positive case samples for the novel HeV were sent to the Australian Centre for Disease Preparedness (ACDP), a World Organization for Animal Health Reference Laboratory for Hendra and Nipah virus diseases, in line with established national arrangements for confirmatory testing of notifiable diseases of animals. Virus isolation was attempted in Vero cells (ATCC CCL-81) and primary kidney cells derived from *Pteropus alecto* (PaKi; *39*) on whole blood and pooled nasal, oral and rectal swab samples. Vero cells were grown at 37°C in EMEM (ThermoFisher; https://www.thermofisher.com) containing 10% fetal calf serum (FCS; ThermoFisher), supplemented with 1% v/v L-glutamine, 10 mM HEPES, 0.25% v/v penicillin– streptomycin and 0.5% v/v amphotericin B (Sigma-Aldrich; https://www.sigmaaldrich.com). PaKi cells were cultured in DMEM/F-12 media (ThermoFisher) with 5% FCS and supplemented with 1% v/v L-glutamine, 10 mM HEPES, 0.25% v/v amphotericin B (Sigma-Aldrich).

For virus isolation, washed monolayers of cells were inoculated with 500 μ L of whole blood diluted 1:5 in culture media or 500 μ L of pooled swab sample prefiltered (0.45- μ m cellulose acetate) to remove bacteria and any residual solid particles. Inoculum was removed after 45 min and cell monolayers were washed with phosphate-buffered saline, then overlaid with culture media containing 1% (v/v) FCS. Flasks were incubated at 37°C for 6–7 days and regularly monitored for cytopathic effect by light microscopy. Cells were then frozen, thawed and the cell suspension clarified by centrifugation (1000g at 4°C). Supernatant (500 μ L) was then passaged onto fresh cell monolayers. A maximum of three passages per sample were performed on each cell line. Final pass samples were tested by qRT-PCR to detect the presence of replicating HeV genome.

Electron Microscopy

For negative contrast EM, the clarified supernatant from Vero cell cultures, infected with HeV-var, were inactivated with 4% formaldehyde overnight. After adsorption of the inactivated supernatant onto formvar/carbon coated Cu400 grids, the preparation was then stained with Nano-W (Nano-probes) for 1 min. For thin section EM, the pelleted cells were fixed with modified Karnovsky fixative (4% formaldehyde and 2.5% glutaraldehyde in 0.1 M Sorensen's phosphate buffer) at 4°C overnight. The pellet was rinsed in analogous buffer, fixed with 1% osmium tetroxide for 1 hr and dehydrated with a graded ethanol series prior to being embedded in Spurr's resin (ProSciTech; https://proscitech.com.au) according to manufacturer instructions. A Leica UC7 microtome was used to produce ultrathin sections, which were then stained in saturated uranyl acetate in 50% ethanol followed by lead citrate. Grids were examined and images acquired using a JEOL JEM-1400 transmission electron microscope at 120V.

Neutralization Assay

Serial dilutions of the mAb m102.4 and Hendra virus (isolate Hendra virus/Australia/Horse/2008/Redlands) or the HeV-var (Hendra-var/Australia/Horse/2015/Gympie) diluted to contain 100 TCID₅₀/well were incubated for 45–60 min at 37°C in a 96 well plate. A suspension of Vero cells was added to every well at a concentration of 4×10^5 cells per mL. Positive and negative serum controls and virus-only controls were included. Plates were incubated in a humid atmosphere containing 5% CO₂. Cells were examined after 3 days under an inverted microscope for cytopathic effect.

Appendix Table. Infectious disease prioritization categories (with examples) used in this study to identify Hendra-negative equine					
disease cases with highest likelihood of similar undiagnosed viral cause from larger cohort for further investigation					
Infectious disease					
priority	Description	Example			

priority	Description	Example
Category 1	Case features 'pyrexia' or 'abnormal mucous	Pyrexia with tachycardia and acute onset respiratory
Highest infectious	membranes AND one or more other clinical	consolidation and/or secretions. Pyrexia and neurological
disease suspect	signs related to infectious disease OR the	symptoms. Pyrexia and 'injected/congested' mucous
	presence of either change AND	membranes. 'Congested/injected mucous membranes' with
	'epidemiological observation indicative of	acute severe respiratory dysfunction. Clustering of similar
	infectious cause' based on temporal and/or	cases on same or neighboring properties
	spatial relationship to similar disease cases	
Category 2	Pyrexia OR other clinical signs associated	Acute onset abnormal respiratory secretions. Fever of
High infectious	with infectious disease of interest	unknown origin. Colic with the presence of neurological
disease suspect		symptoms
Category 3	Clinical signs may be associated equally with	Colic with the presence of dehydration and mucous
Moderate infectious	infectious and noninfectious causes	membrane changes. Ataxia with the absence of pyrexia or
disease suspect		known trauma
Category 4	Non-infectious etiologies more common or	Ataxia following known traumatic event. Traumatic wounds
Low infectious	most likely on differential diagnosis list, but	following unusual behavioral event. Acute lethargy
disease suspect	infectious cause still possible	following chronic noninfectious disease condition
Category 5	No clinical signs of illness or no infectious	Traumatic wounds in the absence of underlying disease.
No infectious disease	cause considered likely	Screening in unvaccinated horses to manage biosecurity
suspect		risk prior to invasive procedures addressing non-infectious
		disease such as is a common requirement for dentistry or
		admission to equine hospitals in Australia
Category 6	Other infectious disease confirmed via	A case submitted for HeV testing, found negative and then
Confirmed infectious	diagnostic testing	testing positive for alternative known infectious disease
disease		such as ABLV, WNV, EHV or RRV*
*ABLV Australian bat lvss	avirus: EHV. Equine herpes virus: HeV. Hendra virus:	RRV. Ross River Virus: WNV. West Nile virus.

Name	Feature	Start	End
Gblock_F	Primer bind	1	20
T7	Promoter	21	40
Notl site	Restriction site	44	51
M CDS	Matrix gene	52	468
Mr/v_fwd_1	Primer bind	72	92
Mr/v_prb_1	Probe bind	95	119
Mr/v_rev_1	Primer bind	121	140
HENDRA	Sequence insertion	217	240
Notl site	Restriction site	469	476
Gblock_R	Primer bind	480	499

Appendix Figure 2. Quantitative reverse transcription PCR (qRT-PCR) performance and results for clinical samples. A) Amplification plot for duplex qRT-PCR assay reporting both reference (FAM [green]) and variant (HEX [blue]) HeV–strain channels with the synthetic RNA controls. Red traces show detections in the HEX channel for animal-case clinical EDTA blood and swab samples. B) Standard curve plot for duplex qRT-PCR assay reporting both FAM and HEX channels with the synthetic RNA controls.