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Leprosy, also known as Hansen disease, is a chron-
ic infectious disease caused primarily by Mycobac-

terium leprae and to a lesser extent by M. lepromatosis 
bacteria. Both species have a strong tropism for the 
Schwann cells; infection causes peripheral neuropa-
thy, which leads to the characteristic deformities 
and disabilities. Despite successful implementation 
of multidrug therapies for the treatment of leprosy, 
>200,000 new cases were reported globally in 2019. 
Drug-resistant M. leprae strains, although rare, are 
emerging in several parts of the world (1). Therefore, 
newer rapidly acting bactericidal, orally bioavailable 
drugs are required to shorten treatment time and re-
duce transmission.

The high potency of drugs targeting the cy-
tochrome bcc:aa3 terminal oxidase (also known as 
QcrB inhibitors) against M. ulcerans has been re-
ported (3). Of particular importance is the finding 
that a single dose of the drug candidate, Telacebec 
(Q203) (3), eradicates infection in a mouse model 
of Buruli ulcer (4). The potency of drugs targeting 
the cytochrome bcc:aa3 terminal oxidase against M. 
ulcerans is explained by the absence of a functional 
cytochrome bd oxidase, an alternate terminal oxi-
dase that limits the potency of telacebec in M. tuber-
culosis (5,6). Like M. ulcerans, M. leprae has lost the 
genes encoding the cytochrome bd oxidase and any 
other alternate terminal electron acceptors (7). Be-
cause M. leprae relies exclusively on the cytochrome 
bcc:aa3 terminal oxidase for respiration, Scherr et 
al. hypothesized that telacebec and related QcrB  
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The treatment of leprosy is long and complex, benefiting 
from the development of sterilizing, rapidly-acting drugs. 
Reductive evolution made Mycobacterium leprae exqui-
sitely sensitive to Telacebec, a phase 2 drug candidate for 
tuberculosis.. The unprecedented potency of Telacebec 
against M. leprae warrants further validation in clinical trials.



inhibitors could represent a new class of bacteri-
cidal drugs for leprosy (2).

The potency of telacebec was initially tested 
against extracellular M. leprae using a radio-respi-
rometry assay to determine bacterial β-oxidation 
rate. This assay is used to assess viability of noncul-
tivable M. leprae and measures cumulative produc-
tion of CO2 by the bacilli when palmitic acid is the 
sole carbon source (8). Telacebec at a concentration of 
0.2 nM inhibited ≈90% (p<0.001) and 2 nM inhibited 
≈99.9% (p<0.0001) of M. leprae metabolic activity after 
3 days of incubation (Figure, panel A). In compari-
son, rifampin used at 2.0 μM inhibited only ≈45% (p 
= 0.020) of the metabolic activity compared with un-
treated control in the same time frame (Figure, panel 
A). We observed a similar trend after 7 days of in-
cubation (Figure, panel A); 0.2 nM of telacebec was 
significantly more potent than 2 μM of rifampin at 
all tested concentrations in this assay. Telacebec was 
also active against intracellular M. leprae maintained 
in murine bone marrow–derived macrophages (9). 
Telacebec at 2.0 nM inhibited ≈97% (p<0.001 vs. un-
treated) of the metabolic activity of intracellular M. 
leprae in 3 days. Telacebec was also marginally po-
tent against intracellular M. leprae at 0.2 nM but re-
quired longer incubation; we observed a statistically 
nonsignificant reduction of ≈33% (p = 0.069) after 3 
days’ incubation and a significant reduction of ≈40% 
(p = 0.034) after 7 days. Under similar experimental 
conditions, rifampin at 2.0 μM inhibited metabolic ac-
tivity of intracellular M. leprae by ≈44% (p = 0.025) at 
day 3 and ≈72% (p<0.001) at day 7 compared with the  

untreated control group (Figure, panel B). Telacebec 
at 2 or 20 nM was more potent than rifampin in this 
assay as well.

The high nanomolar potency of telacebec against 
both intracellular and extracellular M. leprae prompt-
ed us to evaluate its efficacy in a mouse foot pad mod-
el of infection. We inoculated groups of 5 athymic 
nude mice with 3 × 107 viable M. leprae in both hind 
foot pads. At 8 weeks postinfection, we administered 
telacebec (2 mg/kg) or rifampin (10 mg/kg) by ga-
vage as 1 dose, 5 consecutive daily doses, or 20 doses 
(5 days × 4 weeks). We harvested foot pads 4 weeks 
after completion of the drug treatment. Because M. 
leprae is noncultivable, we measured mycobacterial 
load using an established molecular method (10). We 
determined M. leprae hsp18 and esxA expression lev-
els as a surrogate measure of viability (10). Bacterial 
hsp18 and esxA expression were significantly lower 
in mice receiving 1 (p<0.001) or 5 (p<0.001) consecu-
tive doses of telacebec compared with rifampin or to 
the vehicle-treated control group, indicating a faster 
in vivo bactericidal efficacy of telacebec (Figure, pan-
els C, D). Although >5 consecutive doses of rifampin 
were needed to detect a bactericidal efficacy, 1 dose 
of telacebec at a low dose of 2 mg/kg was sufficient 
to reduce the bacterial viability substantially (Figure, 
panels C, D).

This study demonstrates the exquisite sensitiv-
ity of M. leprae to telacebec and the potential of a 
shorter treatment regimen. Dose-finding studies in 
animals will help to determine an optimum dosing 
regimen for rapid bacterial eradication. Combination  
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Figure. Efficacy of telacebec 
against Mycobacterium leprae 
bacteria in axenic culture (A), in 
murine bone marrow–derived 
macrophages (B), and in athymic 
nude mouse foot pad model (C, 
D). M. leprae hsp18 (C) and esxA 
(D) expression levels were used 
as a surrogate measure of viability. 
For panels A and B, the assays 
were performed in triplicate for 
each condition. For panels C 
and D, each foot pad is taken as 
a data point, and the red dotted 
lines indicate ≈99% M. leprae kill. 
Significance was determined by 
2-tailed unpaired Student t-test. 
14C, carbon 14; CPM, counts per 
minute; Q203, telacebec;  
RMP, rifampin.



therapies between telacebec and first- or second-
line drugs such as rifampin, clofazimine, or mino-
cycline should be evaluated in preclinical animal 
models to guide the development of a potent, fast-
acting, sterilizing drug combination for humans 
that has a low propensity for resistance develop-
ment for humans. The curative promise of telacebec 
or other advanced QcrB inhibitors should be vali-
dated in human clinical trials.
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