Restaurant-Based Measures to Control Community Transmission of COVID-19, Hong Kong

Author affiliations: World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, University of Hong Kong, Hong Kong, China (F. Ho, T.K. Tsang, H. Gao, J. Xiao, E.H.Y. Lau, J.Y. Wong, P. Wu, G.M. Leung, B.J. Cowling); Hong Kong Science and Technology Park, Hong Kong (E.H.Y. Lau, P. Wu, G.M. Leung, B.J. Cowling)

DOI: https://doi.org/10.3201/eid2803.211015

As of April 14, 2021, a total of 11,608 cases and 207 deaths from coronavirus disease (COVID-19) had been reported in Hong Kong (1). A series of community epidemics have occurred, the largest of which have been the third wave in June–October 2020, which had 3,978 cases, and the fourth wave in November 2020–March 2021, which had 6,048 cases. To suppress local transmission of COVID-19, the government implemented a combination of public health and social measures (PHSMs): bar closures, restaurant capacity restrictions and opening hour restrictions, bans on live music performances and dancing, and work-from-home advisories (2). Ongoing assessment of the effect of these measures on transmission can guide evidence-based policy. One type of location in which COVID-19 transmission is known to occur is restaurants (3). Earlier studies have evaluated the impact of PHSMs, including restrictions on large group gatherings (4–6), but the specific effect of restaurant measures was not studied. Here we focus on the effect of restaurant measures on transmission in Hong Kong.

We collected details and time of implementation of each intervention of all the PHSMs applied during the third and fourth waves from the official reports of the Hong Kong government (7) (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/28/3/21-1015-App1.pdf). In wave 3, a ban on dine-in service after 6:00 PM was in force during July 15–August 27, 2020 (Figure, panel A). Other PHSMs were implemented on the same day and kept in place for longer. Wave 4 was initiated by multiple superspreading events in a network of dancing venues. A ban on dine-in service after 6:00 PM was implemented on December 10, 2020, which was a week to a month later than the implementation of other PHSMs (Figure, panel B). Other PHSMs were implemented on the same day and kept in place for longer. Wave 4 was initiated by multiple superspreading events in a network of dancing venues. A ban on dine-in service after 6:00 PM was implemented on December 10, 2020, which was a week to a month later than the implementation of other PHSMs (Figure, panel B). Hence, we could disentangle the effect of shortened dine-in hours from other measures. No other PHSMs were implemented before the study period.

To determine the effect of the ban on dine-in services after 6:00 PM, we applied a previous approach to estimate time-varying reproduction number (Rₜ) (8,9). Then, we fitted LASSO regression models to
log(Rt) to assess the effect of the ban on dine-in services after 6:00 PM on Rt, accounting for the effect from other PHSMs (10). We allowed for a 7-day lag between implementation of a measure and its effect on incidence, to account for the incubation period. In both waves, we grouped the PHSMs other than ban on dine-in services after 6:00 PM into a single variable to indicate the period when ≥3 of these other PHSMs were in place.

We estimated that the ban on dine-in services after 6:00 PM did not reduce Rt in both waves, but other PHSMs were associated with substantial reductions in Rt. In wave 3, Rt rose rapidly to 4.5 on June 27, 2020, but ≈1 week after measures were applied it was <1.0 (Appendix Figure, panel A). Implementation of ≥3 other PHSMs was associated with a 53% (95% CI 44%–59%) decrease in Rt (Table).

In wave 4, Rt increased to 3.1 on November 16, 2020, and then decreased to ≈1.0 after PHSMs began (Appendix Figure, panel B). Implementation of ≥3 other PHSMs was associated with a 40% (95% CI 28%–47%) decrease in Rt. Another model that excluded basic civil service arrangement in other PHSMs showed that a ban on dine-in service beginning at 6:00 PM did not have an effect (Table). We performed sensitivity analysis to remove the effect of superspreading in wave 3 by changing the start date to July 1, 2020; we found the ban on dine-in service from 6:00 PM did not have an effect (Appendix Table 2).

Our analysis suggested that the PHSMs were critical for suppressing the third and fourth waves of COVID-19 in Hong Kong. However, we found that a ban on dine-in hours after 6:00 PM might not have had an effect in both waves when capacity was already reduced. A complete closure of restaurants in Hong Kong would have considerable social impact because dining out is very common. We

Table. Effect on time-varying reproduction number of public health and social measures in waves 3 and 4 of COVID-19, Hong Kong, 2020–2021

<table>
<thead>
<tr>
<th>PHSM</th>
<th>% Change in Rt (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
</tr>
<tr>
<td>Wave 3</td>
<td></td>
</tr>
<tr>
<td>Ban on dine-in service after 6:00 PM†</td>
<td>0</td>
</tr>
<tr>
<td>≥3 other PHSMs‡</td>
<td>−53 (−59 to −44)</td>
</tr>
<tr>
<td>Wave 4</td>
<td></td>
</tr>
<tr>
<td>Ban on dine-in service after 6:00 PM</td>
<td>0</td>
</tr>
<tr>
<td>≥3 other PHSMs</td>
<td>−40 (−47 to −28)</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
</tr>
<tr>
<td>Wave 3</td>
<td></td>
</tr>
<tr>
<td>Ban on dine-in service after 6:00 PM</td>
<td>0</td>
</tr>
<tr>
<td>≥3 other PHSMs, excluding basic civil service arrangement</td>
<td>−51 (−57 to −43)</td>
</tr>
<tr>
<td>Wave 4</td>
<td></td>
</tr>
<tr>
<td>Ban on dine-in service after 6:00 PM</td>
<td>0</td>
</tr>
<tr>
<td>≥3 other PHSMs, excluding basic civil service arrangement</td>
<td>−38 (−46 to −27)</td>
</tr>
</tbody>
</table>

*Wave 3 was June 15–September 30, 2020; wave 4 was November 1, 2020–March 15, 2021. COVID-19, coronavirus disease; PHSM, public health and social measure; Rt, reproduction number.
†Because of variable selection and regularization in LASSO regression, the regression coefficient was shrunk to 0 in the model.
‡Other PHSMs include restricted headcount in restaurants, ban on group gatherings, bar closure, flexible civil service arrangement, and ban on live performances and dancing activity.
hypothesize that encouraging restaurants to extend
dine-in hours, but with capacity restrictions to re-
duce crowding, could be a reasonable approach to
reduce transmission.

A limitation of our analysis is that we cannot
distinguish the effect of some PHSMs because they
began simultaneously. We cannot rule out that a ban
on dine-in service after 6:00 PM might have an effect
if it began earlier than other PHSMs or in regions
with high incidences. In addition, changes in R, are
a consequence of individual behavioral changes such
as avoiding crowded areas; increasing incidence and
implementation of multiple PHSMs could raise the
public’s perception of risk. Determining the effective-
ness of alternative PHSMs would provide evidence-
based guidance on control strategies.

This project was supported by the Health and Medical
Research Fund, Food and Health Bureau, Government
of the Hong Kong Special Administrative Region (grant
no. COVID190118) and the Collaborative Research Fund
(project no. C7123-20G), and by the general research fund
(project no. 17110221) of the Research Grants Council of
the Hong Kong SAR Government. B.J.C. and P.W. are
supported by the AIR@innoHK program of the
Innovation and Technology Commission of the Hong
Kong SAR Government.

About the Author
Ms. Ho is a research postgraduate student at the
School of Public Health, University of Hong Kong.
Her research interest is the transmission and control of
emerging infections.

References
1. The Centre for Health Protection (CHP) of the Department
 of Health (DH) of Hong Kong. CHP investigates 13
 additional confirmed cases of COVID-19. 2021 [cited 2021
 Apr 15]. https://www.info.gov.hk/gia/general/202104/13/
P2021041300746.htm
2. The Government of the Hong Kong Special Administrative
 Region. Government further tightens social distancing
gia/general/202007/14/P2020071400010.htm
 outbreak associated with air conditioning in restaurant,
 https://doi.org/10.3201/eid2607.200764
4. Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA,
 Coupland H, et al.; Imperial College COVID-19 Response
 Team. Estimating the effects of non-pharmaceutical
 61. https://doi.org/10.1038/s41586-020-2405-7
5. Islam N, Sharp SJ, Chowell G, Shabnam S, Kawachi I,
 Lacey B, et al. Physical distancing interventions and
 incidence of coronavirus disease 2019: natural experiment in
 149 countries. BMJ. 2020;370:m2743. https://doi.org/
 10.1136/bmj.m2743
6. Brauer FM, Mindermann S, Sharma M, Johnston D,
 Salvatier J, Gavenciak T, et al.; Inferring the effectiveness
 2021;371:6531
7. The Government of the Hong Kong Special Administrative
 https://www.info.gov.hk/gia/general/202104/21/P2021042100003.HTM
8. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new
 framework and software to estimate time-varying
9. Tsang T, Wu P, Lau E, Cowling BJ. Accounting for imported
 cases in estimating the time-varying reproductive number
10. Friedmann M, Huestie T, Tibshirani R. Regularization paths
 for generalized linear models via coordinate descent.

Address for correspondence: Tim K. Tsang, University of Hong
Kong—WHO Collaborating Centre for Infectious Disease
Epidemiology and Control, School of Public Health, Li Ka Shing
Faculty of Medicine, Patrick Manson Building, 7 Sassoon Rd,
Pokfulam, Hong Kong School of Public Health, Hong Kong;
email: timtsang@connect.hku.hk

Subcutaneous Nodules
Caused by *Tropheryma whippelii* Infection

Lili Wang, Peng Su, Li Song, Lintao Sai

Author affiliation: Shandong University Qilu Hospital, Shandong,
China

DOI: https://doi.org/10.3201/eid2803.211989

To help clarify the clinical manifestations, diagnosis, and
treatment for Whipple disease, we report a case of a man
in China infected with *Tropheryma whippelii*. The patient
had multiple subcutaneous nodules as the only manifes-
tation, which was not consistent with the typical symp-
toms of *T. whippelii* infection.

Whipple disease was reported in 1907 and is a
chronic infectious disease caused by the bacterium *Tropheryma whippelii* (1). This disease can involve