Mycobacterium leprae Infection in a Wild Nine-Banded Armadillo, Nuevo León, Mexico

Lucio Vera-Cabrera, Cesar J. Ramos-Cavazos, Nathan A. Youssef, Camron M. Pearce, Carmen A. Molina-Torres, Ramiro Avalos-Ramirez, Sebastien Gagneux, Jorge Ocampo-Candiani, Mercedes Gonzalez-Juarrero, Jorge A. Mayorga-Rodriguez, Leonardo Mayorga-Garibaldi, John S. Spencer, Mary Jackson, Charlotte Avanzi

Author affiliations: Servicio de Dermatología, Hospital Universitario “José E. González,” Universidad Autónoma de Nuevo León, Monterrey, Mexico (L. Vera-Cabrera, C.J. Ramos-Cavazos, C.A. Molina-Torres, R. Avalos-Ramirez, J. Ocampo-Candiani); Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA (N.A. Youssef, J.S. Spencer, C.M. Pearce, M. Gonzalez-Juarrero, M. Jackson, C. Avanzi); Swiss Tropical and Public Health Institute, Basel, Switzerland (S. Gagneux, C. Avanzi); University of Basel, Basel (S. Gagneux, C. Avanzi); Instituto Dermatológico de Jalisco “Dr. José Barba Rubio,” Guadalajara, Mexico (J.A. Mayorga-Rodriguez, L. Mayorga-Garibaldi)

DOI: https://doi.org/10.3201/eid2803.211295

Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and are implicated in the zoonotic transmission of leprosy in the United States. In Mexico, the existence of such a reservoir remains to be characterized. We describe a wild armadillo infected by M. leprae in the state of Nuevo León, Mexico.

Nine-banded armadillos (Dasypus novemcinctus) can be naturally infected with Mycobacterium leprae and have been implicated in the zoonotic transmission of leprosy in the US states of Texas, Louisiana, Alabama, Georgia, and Florida (1,2). Despite Mexico falling within the armadillos’ natural geographic habitat and the report of 182 new human leprosy cases in Mexico in 2019 (3), only 1 report of an armadillo infected with acid-fast bacilli has occurred since 1984, and the bacterial species in that case was never fully characterized (4).

In 2019, a nine-banded armadillo with ataxia, dyspnea, and adynamia was captured along the Pilon River in Montemorelos in the state of Nuevo León, Mexico. The animal was euthanized, and necropsy revealed granulomatous lesions in diverse organs and tissues (Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/28/3/21-1295-App1.pdf). Histopathologic examination identified acid-fast bacilli in the liver, lung, heart, striated muscle, and ear; the bacilli were especially abundant in the spleen (Figure; Appendix Figure 2). We confirmed the presence of M. leprae in tissue by PCR testing of DNA extracted from the ear, liver, and lung by using the specific repetitive element RLEP (5) (Appendix). We used bacterial DNA extracted from the liver of the infected armadillo (strain A1), harboring the highest bacilli number by microscopy, for library preparation, followed by targeted enrichment using hybridization capture and whole-genome sequencing using NextSeq 500 (Illumina, https://www.illumina.com) (Appendix). After targeted enrichment using hybridization capture, we extracted bacterial DNA from the liver of the infected armadillo (strain A1), harboring the highest bacilli number by microscopy, and conducted sequencing by using NextSeq 500 (Illumina, https://www.illumina.com) (Appendix). The mean read coverage of 87× was sufficient for further comparative analysis at the single nucleotide level with other M. leprae isolates (Appendix Table 1).

The armadillo-derived A1 strain belongs to genotype 3I-2, similar to other M. leprae isolates from the United States, Venezuela, Brazil, and Mexico (1).

Phylogenetically, A1 branches between the US human (NHDP-98) and animal–human (I30, NHDP-63, NHDP-55) M. leprae strains and closely clusters with EGG (6), a strain isolated in 2014 from a 70 year-old man with leprosy living in Nuevo León, Mexico (Appendix Figures 4, 5). Strains A1 and EGG share 9 polymorphisms when compared with the whole-genome sequences from 295 other M. leprae isolates and differed from each other by only 5 single-nucleotide polymorphisms (SNPs) (Appendix Figure 6).

We submitted DNA from M. leprae isolates recovered from the biopsies of additional leprosy patients from the states of Nuevo León (n = 9) and Jalisco (n = 2), Mexico, to partial whole-genome sequencing (n = 4) and PCR genotyping (n = 7) (Appendix Table 2, Figure 5). We deciphered their clustering from previously described positions specific to genotypes 3I-1 and 3I-2 (1) as well as new informative SNPs specific to EGG and A1 (Appendix Table 2, Figure 6). Partial genome reconstruction for all 11 isolates revealed that 4 of them belong to genotype 3I-1, whereas 7 belong to genotype 3I-2. Within genotype 3I-1, isolates F2, F6, and F11 belong to a similar cluster, named 3I-1-c2 (Appendix Figure 4, 5). Within genotype 3I-2, 4 isolates (F1, F8, F14, and F23) belong to the same cluster, named 3I-2-c3, which also encompasses A1 and EGG. Of these isolates, only F1 shared an additional common SNP with A1 but differed >1 SNP (genome position 3232319) from it.
All patients infected with an M. leprae isolate from cluster 3I-2-c3 live in close vicinity (radius of ≈100 km) to the city of Montemorelos, where the infected armadillo was captured (Appendix Figure 5).

We describe the identification and genetic characterization of Mycobacterium leprae in a wild nine-banded armadillo in Mexico. In addition, we show that M. leprae strains belonging to different clusters are circulating in patients in Mexico. The state of Nuevo León, Mexico, shares a border with the US state of Texas, where a high density of leprosy-infected nine-banded armadillos have been reported (4,7). Nine-banded armadillos expanded their range into the United States in the mid-1800s from Mexico (8).

The M. leprae armadillo isolate from Mexico we describe belongs to the same genotype as patients and armadillo isolates from the United States but clusters separately. Isolate A1 further clusters with human isolates exclusively identified in Mexico thus far, with which it displays similar low genetic variation as observed between animal and human isolates in the United States (1). Therefore, our results raise concerns that wild-banded armadillos may, similarly to the situation in the United States, serve as reservoirs for the leprosy bacillus in the state of Nuevo León and call for additional surveillance across Mexico to assess the spread of the disease in the animal population and evaluate zoonosis risks associated with human contact with armadillos.

The existence of an animal reservoir hosting the leprosy bacillus in Mexico threatens the goal of leprosy elimination. In light of our results, we propose that interventions based on a One Health approach may be more efficient in achieving eradication of the disease.

Acknowledgments

We are grateful to all the patients and clinical staff who participated in the study. We thank Mark Stenglein, Marylee Kapuscinski, Mikaela Samsel for Illumina sequencing and technical support, and Dan Sloan for facilitating access to his laboratory.

This work was supported by the Fondation Raoul Follereau (grants to M.J. and C.A.), the Heiser Program of the New York Community Trust for Research in Leprosy (grant no. P18-000250 to J.S.S. and C.A.), a Fulbright Scholar to Brazil award 2019–2020 (grant to J.S.S.), the Association de Chimiothérapie Anti-Infectieuse of the Société Française de Microbiologie, the European Union’s Horizon 2020 Research and Innovation Program (Marie
Sensitivity of Mycobacterium leprae to Telacebec

Ramanuj Lahiri, Linda B. Adams, Sangeeta Susan Thomas, Kevin Pethe

Author affiliations: US Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, USA (R. Lahiri, L.B. Adams); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (S.S. Thomas, K. Pethe)

DOI: https://doi.org/10.3201/eid2803.210394

The treatment of leprosy is long and complex, benefiting from the development of sterilizing, rapidly-acting drugs. Reductive evolution made Mycobacterium leprae exquisitely sensitive to Telacebec, a phase 2 drug candidate for tuberculosis. The unprecedented potency of Telacebec against M. leprae warrants further validation in clinical trials.

Leprosy, also known as Hansen disease, is a chronic infectious disease caused primarily by Mycobacterium leprae and to a lesser extent by M. lepromatosis bacteria. Both species have a strong tropism for the Schwann cells; infection causes peripheral neuropathy, which leads to the characteristic deformities and disabilities. Despite successful implementation of multidrug therapies for the treatment of leprosy, >200,000 new cases were reported globally in 2019. Drug-resistant M. leprae strains, although rare, are emerging in several parts of the world (1). Therefore, newer rapidly acting bactericidal, orally bioavailable drugs are required to shorten treatment time and reduce transmission.

The high potency of drugs targeting the cytochrome bccaa3 terminal oxidase (also known as QcrB inhibitors) against M. ulcerans has been reported (3). Of particular importance is the finding that a single dose of the drug candidate, Telacebec (Q203) (3), eradicates infection in a mouse model of Buruli ulcer (4). The potency of drugs targeting the cytochrome bccaa3, terminal oxidase against M. ulcerans is explained by the absence of a functional cytochrome bd oxidase, an alternate terminal oxidase that limits the potency of telacebec in M. tuberculosis (5,6). Like M. ulcerans, M. leprae has lost the genes encoding the cytochrome bd oxidase and any other alternate terminal electron acceptors (7). Because M. leprae relies exclusively on the cytochrome bccaa3 terminal oxidase for respiration, Scherr et al. hypothesized that telacebec and related QcrB

Address for correspondence: Charlotte Avanzi, Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682, USA; email: charlotte.avanzi@colostate.edu; Lucio Vera-Cabrera, Servicio de Dermatologia, Hospital Universitario, UANL, Madero y Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, Mexico CP64460; email: luvera.99@yahoo.com

References

Address for correspondence: Charlotte Avanzi, Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682, USA; email: charlotte.avanzi@colostate.edu; Lucio Vera-Cabrera, Servicio de Dermatologia, Hospital Universitario, UANL, Madero y Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, Mexico CP64460; email: luvera.99@yahoo.com

About the Author

Dr. Vera-Cabrera is a professor of dermatology at the Faculty of Medicine in University of Nuevo León, Monterrey, Mexico. His research interests include immune response against intracellular infectious agents and pathogenic mechanisms of bacteria of the genus Mycobacterium and Nocardia.

Sangeria Susan Thomas, Kevin Pethe

Author affiliations: US Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, USA (R. Lahiri, L.B. Adams); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (S.S. Thomas, K. Pethe)

DOI: https://doi.org/10.3201/eid2803.210394

The treatment of leprosy is long and complex, benefiting from the development of sterilizing, rapidly-acting drugs. Reductive evolution made Mycobacterium leprae exquisitely sensitive to Telacebec, a phase 2 drug candidate for tuberculosis. The unprecedented potency of Telacebec against M. leprae warrants further validation in clinical trials.

Leprosy, also known as Hansen disease, is a chronic infectious disease caused primarily by Mycobacterium leprae and to a lesser extent by M. lepromatosis bacteria. Both species have a strong tropism for the Schwann cells; infection causes peripheral neuropathy, which leads to the characteristic deformities and disabilities. Despite successful implementation of multidrug therapies for the treatment of leprosy, >200,000 new cases were reported globally in 2019. Drug-resistant M. leprae strains, although rare, are emerging in several parts of the world (1). Therefore, newer rapidly acting bactericidal, orally bioavailable drugs are required to shorten treatment time and reduce transmission.

The high potency of drugs targeting the cytochrome bccaa3 terminal oxidase (also known as QcrB inhibitors) against M. ulcerans has been reported (3). Of particular importance is the finding that a single dose of the drug candidate, Telacebec (Q203) (3), eradicates infection in a mouse model of Buruli ulcer (4). The potency of drugs targeting the cytochrome bccaa3, terminal oxidase against M. ulcerans is explained by the absence of a functional cytochrome bd oxidase, an alternate terminal oxidase that limits the potency of telacebec in M. tuberculosis (5,6). Like M. ulcerans, M. leprae has lost the genes encoding the cytochrome bd oxidase and any other alternate terminal electron acceptors (7). Because M. leprae relies exclusively on the cytochrome bccaa3 terminal oxidase for respiration, Scherr et al. hypothesized that telacebec and related QcrB
Mycobacterium leprae Infection in a Wild Nine-Banded Armadillo, Nuevo León, Mexico

Appendix

Methods

Leprosy Characterization in the Wild Banded Armadillo

Gold standard leprosy diagnosis in human relies on the identification of clinical signs of the disease and the presence of bacilli in tissues. We applied the same approach in animals by examining lesions in internal organs (Appendix Figure 1) since clinical signs are mild in wild banded armadillos (1), next identifying acid-fast bacilli in different tissues (Appendix Figure 2) and finally confirming M. leprae by molecular methods (Appendix Table 1).

Technically, assessing a zoonosis risk for leprosy relies on the genetic characterization of the strain in both the human and animal hosts. The reference work in the leprosy field is the study conducted by Truman and colleagues on wild armadillos in the United States where human and animal strains were submitted to whole-genome sequencing (WGS) before identification of specific polymorphisms (2). These newly identified polymorphisms were then used to screen a bigger sample set. In parallel, the direction of transmission was also deciphered from comparative genomics of M. leprae strains from other countries including ancient strains from Europe (2). We applied here a similar approach by sequencing the whole genome of the armadillo strain A1 and compared it to human M. leprae strains from Mexico (AGM, EGG, F6, F11 and F14) to decipher specific markers that were then used to screen more human samples from Mexico (P1, F30, F33, F1, F8, F23).

Overall, our data identified three clusters of M. leprae strains in Nuevo León, with half of the human strains belonging to the same cluster as the armadillo A1 strain.
Collection of Armadillo Sample

Our group has been working on genotyping samples from patients with leprosy, soil samples from armadillo burrows and samples from live animals in the state of Nuevo León, Mexico in the frame of a PhD project (3). During the investigations in 2019, a nine-banded armadillo presenting ataxia, dyspnea, and adynamia was captured in El Ejido San Francisco, in the vicinity of the Pilon River in Montemorelos, a municipality of Nuevo León (NL), Mexico. The animal was euthanized, and autopsy revealed granulomatous lesions in diverse organs and tissues (Appendix Figure 1). At the time of the necropsy, samples of internal (brain, liver, lung, heart, striated muscle, lymph nodes, spleen) and external organs (ear) were aseptically removed and prepared for histological examination as well as preserved in 70% ethanol for further molecular investigation. A piece of ear was collected because the animal had lost the tips of its ears (Appendix Figure 1) and while this could be the results of an injury, the team was wondering if this could be linked with leprosy lesions. The microscopy result shows the presence of acid-fast bacilli in the ear of the animal suggesting that the ear could be used as a sample for screening.

Staining of *M. leprae* in Armadillo Tissues to Detect Acid-Fast Bacilli

Tissue samples of all organs were fixed in 4% paraformaldehyde in phosphate buffered saline (PBS) and sectioned to 8–10 μm thickness. Subsequent tissues were mounted on glass slides and stained using Fite Faraco staining as previously described (4).

Additional tissue from spleen, liver and lung were embedded in paraffin and sent to Colorado State University where SYBR Gold fluorescent staining was performed as previously described (5). Images were taken on an LSM 510 Confocal microscope with a 405 nm laser for DAPI and a 488 argon laser for SYBR gold.

DNA Extraction of Armadillo and Human Samples

DNA isolation from fresh tissue samples (AGM, all samples with names starting with an F, and armadillo tissues: liver, spleen, lung, ear, heart, muscle) was carried out as previously described by Van Embden and colleagues (6). DNA extraction from internal organs was prioritized for genomic analysis given the high number of acid-fast bacilli found in liver of the infected animal. For paraffin-embedded samples (P1), DNA extraction was carried out on 12 μm cuts using a new blade for each sample to avoid contamination. Samples were first
deparaffinized using xylene and ethanol followed by bacterial lysis with proteinase K at 56°C for 3h and DNA purification the Qiagen DNeasy kit (Qiagen, Germany) as per the manufacturer’s recommendations. The quality and quantity of DNA was then assessed using the Eppendorf biophotometer.

Detection of RLEP Sequences by PCR and Quantitative PCR

Detection by PCR (CNR, Mexico)

Characterization of the leprosy agent in human skin biopsies and animal samples was performed using the specific primers targeting the 488-bp region of the core RLEP (*M. leprae*) and the 244-bp region of *hemN* (*M. lepromatosis*) as previously described (7). The results are shown in the gel picture Appendix Figure 3 for the liver, lung and ear sample from the wild armadillo.

Detection by qPCR (CSU, USA)

Quantitative PCR was performed on sample A1 extracted from the spleen of the armadillo, as well as on all DNA extracted from human skin biopsies using the specific RLEP sequence as described previously (8). qPCR data are shown in Appendix Figure 6.

Whole-genome Sequencing, Data Analysis, and Comparative Genomics

DNA libraries from A1, F6, F11, F14 and AGM were prepared using the Kapa Hyper Prep kit (Roche, Switzerland) as per the manufacturer’s recommendation using Kapa Dual Indexed Adaptor (Roche, Switzerland) followed by in-solution capture enrichment with 80-nt RNA baits with 2x tiling density for 48h at 65°C as previously described (8). Post-capture amplification was performed with seven cycles. Enriched libraries were purified using a 1X ratio of KAPA Pure beads followed by quantification with the KAPA library quantification kit and quality control of the fragment with the Agilent 2200 TapeStation. Libraries were then normalized and pooled across sequencing lanes on an Illumina NextSeq 500 on a high output kit v2; 75 cycles (Illumina, CA, USA). Raw reads were processed as described elsewhere and sequencing parameters for each genome are shown in Appendix Table 1 (8). Phylogenetic analyses were performed using a concatenated SNP alignment. Maximum Parsimony (MP) trees were constructed in MEGAX (9) with the 295 *M. leprae* genomes available on public databases (10) using 500 bootstrap replicates and *M. lepromatosis* (7) as outgroup. Sites with missing data
were partially deleted (80% coverage cutoff), resulting in 4,567 variable sites used for the tree calculation.

Genotyping of *M. leprae* Strains and Amplification of Specific Loci

The comparative genomics of all sequenced strains from Mexico (A1, F6, F11, F14, AGM, EGG) with the 295 publicly available *M. leprae* genomes revealed that Mexican strains belong to three different clusters in the genotype 3I that we arbitrary named 3I-1-c1; 3I-1-c2 and 3I-2-c3. SNP of the sequenced *M. leprae* genomes from each cluster were compared to the 295 publicly available *M. leprae* genomes and specific loci for each cluster were identified (Appendix Figure 4). To identify genotype-specific SNPs in samples where WGS was not possible (F1, F2, F6, F8, F11, F14, F23), due to high qPCR Cycle threshold (Ct) (>25), we amplified a handful of genomic positions according to the genotyping scheme shown in Appendix Figure 6. To do so, primers were designed using the Primer3 web tool and are described in Appendix Table 2. For each sample, 5 μl of the starting materials, negative control (water) or positive control (*M. leprae* DNA strain Thai-53, NR19352) was used in 50 μl reactions using the Quick-Load Tas 2X Master Mix, and quality was assessed on 1X agarose gel. Amplification started with a 3 min initial denaturation step at 94°C, followed by 40 cycles of 30 s denaturation at 94°C, 30 s annealing at 58°C (all PCR primers’ optimized temperatures are in Appendix Table 2), and extension at 72°C for 30 s; final extension was at 72°C for 5 min. Amplicons were purified using ExoSAP-IT PCR Product Cleanup reagent and sequencing was done by Genewiz.

Genotyping of F1

Our data show that the strain F1 harbors the genotype 3I-2 and belongs to the cluster 3I-2-c3 (SNP-7614 and SNP-3260610). Next, to differentiate strains within cluster 3I-2-c3, we identified SNPs specific to either A1 or EGG. *M. leprae* is a clonal organism with limited expected genetic variation between strains from the same geographic area (11,12), and the SNP-1147347 is specific to A1 (not found in any of the 295 other genomes analyzed). Therefore, despite having a partial genome reconstruction for F1, the fact that the strain harbors the SNP-7614, SNP-3260610 and SNP-1147347 and the absence of SNP-1147262 and SNP-1206419 is indicative of the strain belonging to the cluster 3I-2-c3 that will branch more closely to A1 than to F14 and EGG.
Genotyping of F8 and F23

Both strains harbor the genotype 3I-2 and also belong to the cluster 3I-2-c3 (SNP-7614 and SNP-3260610). However, they do not share any of the specific SNPs identified in A1 or EGG so we cannot further decipher the branching of these two strains inside the cluster 3I-2-c3.

Genotyping of F6 and F11

The strains F6 and F11 belong to the genotype 3I-1 (SNP-7614, absence of SNP-1527053) and form a cluster (named 3I-1-c2) between VB-21 (Venezuela) and Br2016–46 (Brazil). We identified one SNP (SNP-732918) which is only shared by F6 and F11 and not by any of the other 295 genomes used for the comparative genomic.

Data Availability

All raw read files have been deposited in the trace archive of the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) accession number SRR14638043-SRR14638047; under the BioProject accession PRJNA732526 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA732526?reviewer = 3scakbpmp47kpv0lo6n0konjg4u).

Ethics Statement

Ethics approval from the ethical committee from the Hospital Universitario “Dr. José Eleuterio Gonzalez” (number DE19–00010) to collect all clinical samples and perform molecular investigations of the M. leprae strains. Written informed consent was obtained from all the patients for biopsy procedure and data sharing.

References

 https://doi.org/10.47276/lr.76.3.198

 https://doi.org/10.1056/NEJMoia1010536

Appendix Table 1. Sequencing data for all five newly sequenced genomes from nine-banded armadillo (A1) and humans (F6, F11, F14 and AGM)

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Number of reads mapping to the reference strain (TN)</th>
<th>Mean Coverage</th>
<th>Mean Standard Coverage</th>
<th>SRA accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>21,290,001</td>
<td>86.9</td>
<td>16.8</td>
<td>SRR14638047</td>
</tr>
<tr>
<td>F6</td>
<td>42,457,775</td>
<td>5.25</td>
<td>6.1</td>
<td>SRR14638046</td>
</tr>
<tr>
<td>F11</td>
<td>39,047,908</td>
<td>2.5</td>
<td>3.5</td>
<td>SRR14638045</td>
</tr>
<tr>
<td>F14</td>
<td>40,575,889</td>
<td>6.6</td>
<td>5.4</td>
<td>SRR14638044</td>
</tr>
<tr>
<td>AGM</td>
<td>59,336,213</td>
<td>85.5</td>
<td>24.4</td>
<td>SRR14638043</td>
</tr>
</tbody>
</table>
Appendix Table 2. List of primers used in this study – Opt T°C: optimal annealing temperature for the corresponding primers set

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Target gene</th>
<th>Purpose</th>
<th>Amplicon size (bp)</th>
<th>Primer sequence (5′-3′)</th>
<th>Nucleic acid modification</th>
<th>Opt T°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>131F</td>
<td>ml0978</td>
<td>Specific to A1 Specific to EGG</td>
<td>174</td>
<td>GCACAATCGTGAACCGACTA CA1147347G C1147262T</td>
<td>A1147347G C1147262T</td>
<td>58°C</td>
</tr>
<tr>
<td>131R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132F</td>
<td>ml2704</td>
<td>Specific to cluster 3I-2-c3</td>
<td>175</td>
<td>TAATGATCAGCTTGCGTTGCA CGACACCGATATCGTATGAC</td>
<td>C3260610T</td>
<td>58°C</td>
</tr>
<tr>
<td>132R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133F</td>
<td>cydD</td>
<td>Specific to 3I-2</td>
<td>236</td>
<td>GCACCTGATACACTCGGACTTG C1147262T</td>
<td>G1527053C</td>
<td>58°C</td>
</tr>
<tr>
<td>133R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134F</td>
<td>ml2681</td>
<td>Specific to A1</td>
<td>157</td>
<td>TGGGACGTGTTATCTGCACTG G1147262T</td>
<td>G3232319 G>A</td>
<td>58°C</td>
</tr>
<tr>
<td>134R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135F</td>
<td>dnaK</td>
<td>Specific to A1</td>
<td>241</td>
<td>TCTGTTACCCTGAGGGGCTA C1147262T</td>
<td>C2974107T</td>
<td>58°C</td>
</tr>
<tr>
<td>135R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137F</td>
<td>ddp</td>
<td>Specific to 3I-2</td>
<td>261</td>
<td>CAATCGAAGAGATTCACAA C1147262T</td>
<td>G2714879C</td>
<td>58°C</td>
</tr>
<tr>
<td>137R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138F</td>
<td>ml0600-ml0601</td>
<td>Specific to cluster 3I-1-c2</td>
<td>273</td>
<td>CACCAATGCATTGCTGAGT C1147262T</td>
<td>T732918G</td>
<td>58°C</td>
</tr>
<tr>
<td>138R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140F</td>
<td>cydD</td>
<td>Specific to NHDP-98</td>
<td>250</td>
<td>CAACCAGTCCACAGACTAC C1147262T</td>
<td>G1526442C</td>
<td>58°C</td>
</tr>
<tr>
<td>140R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gyrA_OMS_F</td>
<td></td>
<td>Specific to 3I genotype</td>
<td>225</td>
<td>ATGGTCTCAAACCGGTACATC C1147262T</td>
<td>C7614T</td>
<td>55°C</td>
</tr>
<tr>
<td>gyrA_OMS_R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix Figure 1. Macroscopic lesions of the infected nine-banded armadillo. A. Picture of the animal before autopsy - the black arrow indicates where the sampling was performed on the ear. B. Macroscopic lesions in the lungs (black arrow).

Appendix Figure 2. Fite-Faraco (A, B, D, E, F) or SYBR Gold (C) staining showing abundant acid-fast bacilli (fuchsia color in panels A., B. and D., and in green in panel C.) in A. the lung, B. the ear, C. the liver, and particularly in D., the spleen, E., heart, and F., striated muscle.
Appendix Figure 3. Results of the PCR RLEP and LPM244 performed on DNA extracted from the internal organs of the wild-banded armadillo – Two µl of undiluted DNA from the liver (AH1), lung (AP1) and ear (AO1) was used as starting materials for PCR. C-: negative control (water); C+ positive control (diluted DNA from a previously diagnosed leprosy patient) – Positive control for LPM244 is not shown in the picture and no bands are observed at 244bp.
Appendix Figure 4. Comparative genomics of the *M. leprae* strain from the wild animal (A1) and the ones identified in human in Mexico (EGG, F14, AGM, F6 and F11) - The tree represents a zoom into the *M. leprae* genotypes 3I-1 and 3I-2 deciphered from a maximum parsimony tree of 300 *M. leprae* genomes. Support values were obtained by bootstrapping 500 replicates. Branch lengths are proportional to nucleotide substitutions. All genomes from Mexico are presented in bold and color-coded according to their respective cluster: 3I-1-c1 (green), 3I-1-c2 (purple) and 3I-2-c3 (orange).
Appendix Figure 5. Additional genotyping on human *M. leprae* strains and their sampling sites in Mexico.

- The isolates described in this study are bold and color-coded based on genotyping results (by PCR or WGS) and their respective clusters as in B. Cluster level is unavailable for P1, F30 and F33 and data used for the map are available in Appendix Figure 6. The map was downloaded from https://www.amcharts.com/svg-maps/ under a free license; the silhouettes were downloaded from http://phylopic.org/about under a free license. The current figure was modified and colored in Inkscape (13).
Appendix Figure 6. Demographic and genotype of *M. leprae* isolates from human and armadillo. Previously published *M. leprae* genomes from genotypes 3I-1 (Br2016–47, Br2016–17) and 3I-2 (I30, NHDP-98, EGG) are also indicated in the figure. Ct: cycle threshold.; ND: not done; insufficient DNA quantity.