
Consumption of wildlife meat drives emerging 
infectious diseases (1), often amplified by hu-

man encroachment into natural areas and changes 
in land use. Wildlife trade and consumption have 
been responsible for outbreaks of diseases such as 
HIV-1 (2), Ebola (3), and monkeypox (4) and pos-
sibly for the coronavirus disease pandemic (5). 
Wildlife markets bring diverse species into con-
tact, usually in dense and unsanitary conditions, 
enabling mixing, amplification, and transmission 
of pathogens among species, including humans 
(6). Small mammals host diverse pathogenic bac-
teria and viruses (7), but little investigation of en-
demic bacteria transmission has occurred. De-
termining pathogens present in traded wildlife 

is vital to guide appropriate measures to combat  
zoonotic diseases and document societal and envi-
ronmental costs of wildlife trade.

The Study
During December 2014–September 2017, we col-
lected samples from 9 wildlife trade hotspots (8) and 
2 roadside stalls (hereafter all referred to as trade 
sites) in Laos (Figure; Appendix Table 1, https://
wwwnc.cdc.gov/EID/article/28/4/21-0249-App1.
pdf). In addition, 3 Provincial Offices of Forest In-
spection (POFI) collected samples from wildlife con-
fiscated in markets by law enforcement. After identi-
fying wildlife at trade sites (9), we asked vendors for 
permission to sample their animals. Depending on 
whether the animal was alive, dead, or butchered, 
we collected urogenital swabs, urine and blood sam-
ples, and kidney, liver, and spleen tissue samples 
(Appendix Table 2). 

We extracted nucleic acid using QIAamp Viral 
RNA Mini Kits (QIAGEN, https://www.qiagen.
com) with modifications (Appendix). We conduct-
ed PCRs targeting Leptospira spp., Rickettsia spp., 
Orientia tsutsugamushi, Anaplasmataceae, Ehrlichia 
chaffeensis, Anaplasma phagocytophilum, Coxiella bur-
netti, flaviviruses, hantavirus, dengue virus, Zika 
virus, and universal bacterial 16S rRNA (Appendix 
Table 3). Where necessary, PCR products were se-
quenced (Macrogen Inc., https://www.macrogen.
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com) and compared against GenBank through blastn 
(https://blast.ncbi.nlm.nih.gov). We performed de-
scriptive, univariate, and multivariate analyses by 
using R version 3.6.2 (https://www.r-project.org). 
We assessed the effect of the wild meat processing 
status (alive, fresh, or frozen) on the risk for Lepto-
spira detection by using a mixed effects logistic re-
gression with species as random effect. Statistical 
significance was set at α = 0.05 (Appendix).

We collected 717 samples from 359 animals (trade 
sites: 461 samples from 324 animals; POFI: 256 sam-
ples from 35 animals); animals sampled were from 
>37 identifiable vertebrate species from 12 families 
(Appendix Table 4). Most were Sciuridae squirrels 
(73.0%, 262/359) and represented 16 species, most 
frequently Pallas’s squirrel (Callosciurus erythraeus) 
(20.3%, 73/359). From trade sites, 69 animals (21.3%, 
95% CI 17.0%–26.2%) had >1 samples positive for >1 

pathogens in 10 of 11 sites (90.9%, 95% CI 57.1%–
99.5%) (Appendix Table 5). Of 324 animals tested, 
65 (20.1%, 95% CI 15.9%–24.9%) were positive for 
Leptospira spp.; 4/41 were positive for Rickettsia spp. 
(9.8%, 95% CI 3.2%–24.1%), 0 for O. tsutsugamushi 
(0%, 95% CI 0%–10.7%), and 2 for Anaplasmataceae 
(4.9%, 95% CI 0.8%–17.8%) (Table 1). Positivity was 
higher among animals collected by POFI; 25/35 
(71.4%) animals tested positive for >1 pathogens. Of 
those, 9 were positive for Leptospira spp. (25.7%, 95% 
CI 13.1%–43.6%), 20 for Rickettsia spp. (57.1%, 95% 
CI 39.5%–73.2%), 2 for O. tsutsugamushi (5.7%, 95% 
CI 1.0%–20.5%), and 6 for Anaplasmataceae (17.1%, 
95% CI 7.2%–34.3%) (Table 2). Sequencing identified 
R. typhi, R. felis, R. conorii, an Anaplasma species (ei-
ther A. centrale, A. capra, or A. marginale), A. platys, 
A. bovis, A. phagocytophilum, Ehrlichia chaffeensis, Lac-
tococcus garvieae, and Kurthia populi (Tables 1, 2). No  
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Figure. Wildlife trade sites and 
POFI sites (black circles) where 
wildlife samples were collected 
for study of zoonotic pathogens 
in wildlife traded in markets 
for human consumption, Laos. 
Provinces are labeled with black 
squares. POFI, Provincial Office 
of Forestry Inspection.
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samples were positive for C. burnetii (0/76), fla-
viviruses (0/359), dengue virus (0/359), or Zika  
virus (0/358).

Among species for which >10 individual ani-
mals were sampled in trade sites, 2 had particu-
larly high proportions of Leptospira spp.–positive 
specimens: the variable squirrel (Callosciurus fin-
laysonii) (13/28; 46.4% 95% CI 28.0%–65.8%) and 
the common palm civet (Paradoxurus hermaphrodi-
tus) (10/22; 45.5%, 95% CI 25.2%–67.3%). Leptospira 
spp.–positivity was higher in dry (50/195; 25.6%, 
95% CI 19.8%–32.5%) than wet season (15/129; 
11.6%, 95% CI 6.9%–18.8%) (χ2  =  8.7; p = 0.003). 
Data disaggregation by species and province sug-
gested that observed seasonality was driven by 
results in common palm civets and variable squir-
rels in Champasak Province. No association was 
detected between the probability of an animal test-
ing positive for Leptospira and the animal being 
alive (3/22; 14%, 95% CI 3.6%–36%), freshly dead 
(58/293; 20%, 95% CI 16%–25%; p = 0.6), or frozen 
(4/9; 44%, 95% CI 15%–77%; p = 0.1). In a subset 

of Leptospira spp.–positive animals with multiple 
samples, 75% (18/24; 95% CI 53%–89%) of urogeni-
tal swab samples and 50% (9/18; 95% CI 29%–71%) 
of blood samples were positive (p = 0.11 by Fisher 
exact test). Rickettsia spp. were detected exclusively 
in solid organs (liver, kidney, and spleen).

Zoonotic pathogens were nearly ubiquitous 
across sites; 10/11 sites yielded >1 pathogens. Squir-
rels are frequently traded in Lao markets (8) and had 
the greatest pathogen diversity in this study. Lepto-
spira spp. was identified most frequently, found in 
20.1% of animals (>45% in variable squirrels and 
common palm civets). Variable squirrels are com-
monly traded, often in batches of 2 to 3 squirrels (8); 
hence, on average, someone purchasing 3 variable 
squirrels would have an 83% likelihood of buying 
>1 infected squirrel (p = 1 – (1 – prevalence)3  =  1 
– 0.553 = 0.83). The higher risk for Leptospira detec-
tion in the dry season is at odds with the typically 
described correlation of transmission with precipi-
tation and flooding (10), suggesting that much re-
mains to be understood of Leptospira ecology. Other 
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Table 1. Zoonotic pathogens detected and animal species and sample types that tested positive in wildlife collected from trade sites, 
Laos* 

Organism 
No. positive/no. tested Sequencing identity 

match, %† Animals Species Samples Sample types 
Leptospira spp. 65/324 Callosciurus finlaysonii squirrel, 13/28 72/461 URO, 58/312 NA   

C. erythraeus squirrel, 8/56  SPL, 1/3 
 

  
Paradoxurus hermaphroditus civet, 

10/22 
 KID, 2/6 

 

  
C. inornatus squirrel, 7/34  LIV, 1/40 

 
  

Dremomys rufigenis squirrel, 5/35  BLD, 9/85 
 

  
Menetes berdmorei ground squirrel, 

4/29 
 URI, 1/15 

 

  
Rhizomys pruinosus rat, 3/21  

  
  

Arctogalidia trivirgata civet, 2/2  
  

  
Petaurista philippensis flying squirrel, 

1/9 
 

  

  
Atherurus macrourus porcupine, 1/1  

  
  

Belomys pearsonii flying squirrel, 1/12  
  

  
Eonycteris spelaea bat, 1/3  

  
  

Hylopetes alboniger flying squirrel, 1/5  
  

  
H. phayrei flying squirrel, 1/9  

  
  

H. spadiceus flying squirrel, 1/2  
  

  
Muntiacus muntjak deer, 1/1  

  
  

Paguma larvata civet, 1/2  
  

  
Prionailurus bengalensis cat, 1/3  

  
  

Rhizomys sumatrensis rat, 1/6  
  

  
Tupaia belangeri treeshrew, 1/3  

  
  

Unknown Sciuridae squirrel, 1/2  
  

Rickettsia spp. 1/41  P. philippensis flying squirrel, 1/2 1/68 LIV, 1/40 NA 
Rickettsia felis† 2/41  D. rufigenis squirrel, 1/11 2/68 LIV, 2/40 98–100   

P. hermaphroditus civet, 1/6    
R. typhi† 1/41  D. rufigenis squirrel, 1/11 1/68 LIV, 1/40 93 
Anaplasma platys† 1/41  P. hermaphroditus civet, 1/6 1/68 KID, 1/6 98 
A. centrale 1/41  M. muntjak deer, 1/1 5/68 KID, 1/6 98.8–99.6 (A. centrale) 
A. capra 

  
 LIV, 3/40 98.8–99.6 (A. capra) 

A. marginale† 
  

 SPL, 1/3 98.8 (A. marginale) 
*BLD, blood; KID, kidney; LIV, liver; NA, not applicable; SPL, spleen; URI, urine; URO, urogenital swab. 
†Organism identified by sequencing of PCR products and identity match given in the right-hand column. All nucleotide sequences were submitted to 
GenBank under accession nos. MW407963–MW407984 and MW411434–MW411439. 
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studies have shown higher prevalence in rats (11), 
and although we are confident of the results from 
trade sites, storage of animals from POFI sites might 
have resulted in cross-contamination, which war-
rants cautious interpretation of results in this subset. 
Among Leptospira spp.-positive animals, detection 
was more likely in urogenital swab samples, high-
lighting the risk for transmission through infected 
urine (10). Although reservoir rodents are character-
ized by chronic renal infections, septicemia occurs 
during initial infection (10), and the high proportion 
of positive blood samples indicates a public health 
risk in relation to the consumption of uncooked or 
undercooked meat, organs, and blood. The PCR 
used to detect leptospires is specific for pathogenic 
and intermediate species (Appendix Table 3), but we 
could not confirm their human pathogenicity. The 
high volume of squirrel trade combined with high 
infection frequency suggests a high risk for exposure 
among wildlife consumers. Because leptospirosis is 
a key cause of fever in rural Laos (12), further work 
is needed to learn more about the relevance of con-
tact with wildlife through trade and consumption.

The Rickettsiales species identified here are 
known to cause human infections in Laos (13). R. typhi 

causes murine typhus, a major underrecognized 
cause of fever (13). O. tsutsugamushi is responsible for 
up to 23% of fever (14), and although commonly as-
sociated with ground-dwelling rodents, the vectors 
(Leptotrombidium mites) parasitize squirrels (15), and 
O. tsutsugamushi has been isolated from Callosciurus 
notatus squirrels in Malaysia (16). Other bacteria iden-
tified are reviewed elsewhere (Appendix Table 6).

Although many of the human pathogens identi-
fied are transmitted by arthropod vectors, we found 
few arthropods in the wildlife sampled, probably 
because vectors leave animals quickly after animal  
death (17). Therefore, because most market vendors 
sell dead animals obtained from hunters or interme-
diaries (8), vendors are less likely to be exposed to 
disease vectors, and hunters are possibly at greater 
risk than market vendors or consumers. O. tsutsu-
gamushi and R. typhi can cause infections through 
aerosol exposure, bites from infected animals, and 
needlestick injuries (18), but whether such routes of 
infection occur at trade sites is unclear. The frequent 
occurrence of Leptospira, which can be transmitted 
by direct contact with abraded skin and mucous 
membranes, may pose health risks to hunters, ven-
dors, and consumers.
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Table 2. Zoonotic pathogens detected and animal species and sample types that tested positive in wildlife collected from POFI sites* 

Organism 
No. positive/no. tested Sequencing identity 

match, %† Animals Species Samples Sample types 
Leptospira spp. 9/35 Callosciurus finlaysonii squirrel, 1/1 46/256 SPL, 17/69 NA   

Callosciurus erythraeus squirrel, 4/17  KID, 14/91 
 

  
Callosciurus inornatus squirrel, 2/6  LIV, 14/92 

 
  

Petaurista philippensis flying squirrel, 1/5  BLD, 1/3 
 

  
Catopuma temminckii cat, 1/1  

  

Orientia tsutsugamushi 2/34 C. erythraeus squirrel, 2/17 2/252 SPL, 2/252 NA 
Rickettsia spp. 12/35 C. erythraeus squirrel, 5/17 70/252 LIV, 30/92 NA   

P. philippensis flying squirrel, 2/5  KID, 25/91 
 

  
C. inornatus squirrel, 2/6  SPL, 15/69 

 
  

Paradoxurus hermaphroditus civet, 1/2  
  

  
Catopuma temminckii cat, 1/1  

  
  

Ratufa bicolor squirrel, 1/1  
  

Rickettsia conorii† 1/35 P. philippensis flying squirrel, 1/5 1/252 LIV, 1/92 99 
R. felis† 1/35 C. erythraeus squirrel, 1/17 2/252 LIV, 1/92 98    

 SPL, 1/69  
R. typhi 6/35 C. erythraeus squirrel, 6/17 7/252 KID, 4/91 NA    

 LIV, 2/92 
 

   
 SPL, 1/69 

 

Anaplasmataceae 1/34 C. erythraeus squirrel, 1/17 3/252 KID, 2/91 NA    
 SPL, 1/69 

 

Anaplasma bovis† 1/34 C. erythraeus squirrel, 1/17 7/252 KID, 1/91 99.7–100    
 LIV, 3/92 

 
   

 SPL, 3/69 
 

A. phagocytophilum† 2/34  Catopuma temminckii cat, 1/1 4/252 KID, 2/91 98–99   
P. philippensis flying squirrel, 1/4  SPL, 2/69  

Ehrlichia spp./E. 
chaffeensis† 

1/34  Unknown Muridae rat, 1/1 1/252 SPL, 1/69 97 (Ehrlichia spp.)   
 

 
97 (E. chaffeensis) 

Kurthia populi† 1/34 C. erythraeus squirrel, 1/17 1/252 LIV, 1/92 98 
Lactococcus garvieae† 1/34 C. erythraeus squirrel, 1/17 1/252 SPL, 1/69 99 
*BLD, blood; KID, kidney; LIV, liver; NA, not applicable; POFI, Provincial Office of Forestry Inspection; SPL, spleen; URI, urine; URO, urogenital swab. 
†Organism identified by sequencing of PCR products and identity match given in righthand column. All nucleotide sequences were submitted to GenBank 
under accession nos. MW407963–MW407984 and MW411434–MW411439. 
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