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SARS-CoV-2 Antibody Prevalence and 
Population-Based Death Rates, Greater 

Omdurman, Sudan 
Appendix 

Methodology 

Study Area and Design 

Sudan’s capital Khartoum is a tripartite metropolis comprising Khartoum, Bahri and 

Omdurman with a total of 8 million inhabitants (1), located at the confluence of the White and 

Blue Nile. Omdruman, the largest among the three cities was chosen as study site, which 

included 2 surveys: i) a retrospective mortality survey using a 2–stage cluster sampling 

methodology based on random geopoints and ii) a nested SARS-CoV-2 antibody prevalence 

survey. For the mortality survey the recall period was divided into 2 periods: the prepandemic 

(January 1, 2019–February 29, 2020) and the pandemic (March 1, 2020–day of the survey) 

periods. 

The primary objective of the survey was to estimate death rate for persons >50 years and 

the overall seroprevalence of SARS-CoV-2 antibodies in Omdurman. The secondary objectives 

included age group–specific (<5, 5–19, 20–34, 35–49, >50 years) seroprevalences, risk factors 

for seropositivity, health seeking behavior, and access to healthcare among the people living in 

greater Omdurman. Additionally, the sensitivity and specificity of the rapid serologic test (RDT) 

was compared to that of the enzyme–linked immunosorbent assay (ELISA). 

Procedures 

The Ministry of Planning provided a point file containing each middle point of polygons 

representing a residential parcel, which was considered as a household for this survey. 

Proportional to the total number of parcels in the 34 administrative units in greater Omdurman 

(Appendix Figure 1), 140 points were randomly chosen using the random generator software of 

ArcGIS version 10.5 (https://www.arcgis.com), identifying the first household of a cluster with a 

https://doi.org/10.3201/eid28052.11951
https://www.arcgis.com/
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total of 30 households. The remaining 29 households were chosen in closest proximity to the first 

household. All households were included in the mortality survey, whereas the seroprevalence 

survey included 4 randomly selected households per cluster, of which all family members 

without any age restriction were invited to participate. Participants were excluded if they were 

absent after 3 attempted visits. Additionally, dried blood spots (DBS) were collected from 2 out 

of the 4 households participating in the seroprevalence survey. Previously trained medical 

doctors forming the survey team carried out the RDT and DBS collection. 

For the mortality survey, a questionnaire was administered to the head of each household, 

adapted from recent World Health Organization recommendations for identifying mortality from 

COVID-19 (2). Information gathered included demographics of all household members, details 

on deceased household members, comorbidities, COVID-19 testing, and health seeking behavior 

(Appendix Tables 1–6). For the seroprevalence survey, each participant was asked individually 

about past symptoms related to COVID-19, ongoing treatment, exposure to a suspect or 

confirmed COVID-19 case, and other risk factors (Appendix Tables 7–11). 

Sample Size Calculation 

The sample size calculations were performed using ENA 2020 software 

(https://smartmethodology.org). The sample size for the mortality survey was based on deaths of 

persons >50 years of age (0.73 deaths/10,000 persons/day) (3), with a precision of +0.2, a design 

effect of 1.2, and a household size of 6 persons, resulting in a required 3,637 households. For the 

seroprevalence survey, a SARS-CoV-2 antibody prevalence of 34% in the population was 

assumed based on the preliminary results from a study in Khartoum (4). To allow for age 

stratification, the sample size was based on the smallest age group (>50 years), representing 

≈11.5% of the population (4). To obtain a precision of +5%, a 5% type 1 error, and 5% 

inconclusive results, >363 persons per age–group were required. 

To assess the diagnostic performance of the RDT, a total of 745 samples were required 

for analysis by ELISA (5,6). Specifically, 191 positive and 554 negative samples were needed to 

confirm the sensitivity (97.0%, precision +2.5%) and specificity (96.2%, precision +1.7%) 

according to manufacturer. 

https://smartmethodology.org/
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Ethics 

Ethical approval was obtained from the National Health Review Ethics Committee (No. 

3–1–21), Médecins Sans Frontières Ethics Review Board (ID 2089c) and Khartoum State 

Ministry of Health. In addition, the 3 localities of greater Omdurman (Omdurman, Umbedda, 

and Kereri) were informed and authorization received before seeking authorization from the 

administrative units within the localities. Before beginning field data collection, we visited the 

leader of the resistance committee for each block to obtain verbal consent. For the mortality 

survey, we obtained verbal consent from the head of the household. For the seroprevalence 

survey, we obtained written informed consent from adults; for participants <18 years of age, we 

first obtained written informed consent from parents or legal guardians and then oral assent from 

the participants themselves. 

Diagnostics 

For practical reasons and to minimize refusals, we used the least invasive method with 

capillary blood collection for rapid serologic testing (STANDARD Q COVID-19 IgM/IgG 

Combo, https://sdbiosensor.com). Indeed, within the team we discussed intensively about 

whether we should be reporting the estimated infection fatality rate using the results from the 

survey. In the end we decided not to do it because we did not have reliable mortality data for 

Omdurman outside of the survey; also, we could not be sure of the cause of death for the excess 

mortality estimated (Appendix Table 1). The general agreement was that including this 

estimation could have been misleading. The IFR projected for Africa range was from 0.004% in 

Botswana and Central African Republic to 0.67% in South Africa (1) or 1.53% in Nigeria (2). 

All participants either positive for IgM, positive for IgG or positive for IgM and IgG, based on 

the RDT were considered positive for SARS-CoV-2 antibodies. According to the manufacturer, 

the RDT has a sensitivity of 96.9% (95% CI 91.3–99.4) and specificity of 96.2% (93.2–98.2). 

The DBS cards were transferred to the National Public Health Laboratory in Khartoum for 

further analysis by ELISA (EUROIMMUN Anti–SARS-CoV-2 ELISA [IgG, S1 domain], Lot: 

E210118BQ; https://www.euroimmun.com) following standard operating procedures. According 

to the manufacturer, the ELISA assay has a sensitivity of 94.4% and a specificity of 99.6% for 

detecting previous SARS-CoV-2 antibodies. 

https://sdbiosensor.com/
https://www.euroimmun.com/
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Statistical Analysis 

We analyzed the data using R (https://www.r-project.org) and Stata version 15 

(StataCorp, https://www.stata.com). For the crude death rates (expressed as deaths/10,000 

persons/day) a design effect was assumed to weight the differences among clusters (Appendix 

Tables 1–3). To compare death rates between the prepandemic and pandemic periods, the rate 

ratio was calculated based on a 2–sided exact rate ratio test, and Fisher’s exact test was applied 

to proportions where appropriate. For having the most accurate estimation of the seroprevalence 

based on the tests used in this survey, we defined 2 different approaches. First, published 

performance estimates for the RDT were used for a meta-analysis with random effects model 

(adjustment 1). The model provided a corrected estimate of the sensitivity and specificity for 

adjusting the crude seroprevalence. Considering the lack of a standard test for detecting SARS-

CoV-2 antibodies, the waning of antibodies, and the fixed threshold for their detection by RDT 

(7,8), a second adjustment (adjustment 2) was done. The survey’s ELISA results were combined 

with the performance estimation from the previously defined random effects model for both the 

ELISA and RDT and used as inputs for a Bayesian latent-class model (BLCM) (9–11), resulting 

in a RDT performance estimation used as adjustment. For calculating the β distributions of the 

priors for the BLCM, the BetaBuster software (12) was used. When comparing the results of the 

RDT with ELISA only the positive for IgG or IgG/IgM were considered positive. Risk factors 

associated with a positive RDT were assessed with a logistic regression model. To estimate 

excess deaths, SARS-CoV-2 infections, and infection fatality rate, the survey results were 

extrapolated as our population estimation and average household size multiplied by the number 

of households provided by the Ministry of Planning. 

Adjustment Description, Code and Outputs 

Adjustment 1 – Meta-Analysis with Random Effects Model 

For adjustment 1, we estimated sensitivity and specificity of the tests using a univariate 

random effects model following the methods described by Shim et al. (13) The idea behind this 

model is to account for the existing performance data for the tests to improve the estimation of 

the results. For the model, we conducted a meta-analysis of the existing published performance 

data for each of the tests (RDT and ELISA) using the Metaprop function from the R package 

Meta. For the sensitivity and specificity estimation of the RDT we gathered data from 7 studies. 

https://www.r-project.org/
https://www.stata.com/
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Overall, 6 studies derived from the FIND (the Global Alliance for Diagnostics) database (14) and 

data were filtered by assay name (Standard Q COVID-19 IgM/IgG Combo Test), target 

(IgG/IgM), and all periods. The last study was from the US Food and Drug Administration 

(FDA) independent evaluations of COVID-19 serologic tests (15). For the ELISA analysis, we 

used 4 studies: 2 independent (16,17), 1 from the US FDA (18), and 1 from the FIND database 

(19). For the RDT, the resulting sensitivity was 76.6% (95% CI 67.8–83.6) and specificity 99.0% 

(95% CI 98.3–99.4), and for ELISA, sensitivity was 76.9% (95% CI 61.1–87.6) and specificity 

99.1% (97.7–99.7). To estimate the adjusted seroprevalence we used the epi.prev function from 

the R package EpiR with the estimated specificity and sensitivity of the RDT obtained from the 

meta-analysis. 

Adjustment 2 – Bayesian Latent-Class Model 

We used adjustment 2 to account for the lack of a standard for the detection of SARS-

CoV-2 antibodies and the use of imperfect tests. For this purposes we used a BLCM based on the 

Hui-Walter paradigm, which has been widely documented (20–22) as a valuable tool to estimate 

the performance of diagnostic tests in scenarios similar to the ones in this survey. To develop this 

model we used the runjags R package (23) and the data of the participants with ELISA and RDT 

test results. We divided the data into 5 groups by participant age. We used BetaBuster (24) 

software to calculate the β distributions of the sensitivity and specificity resulted from the 

previous meta-analysis. This information resulted in the following prior β functions and used as 

parameters for the BLCM: RDT sensitivity dbeta(61.22,19.40), specificity dbeta(965.86, 10.74); 

ELISA sensitivity dbeta(21.77, 7.24), specificity dbeta(332.21, 4.01). On the basis of this model 

we estimated a RDT sensitivity and specificity of 61.9% (56.8–66.9) and 98.9% (98.2–99.5). To 

estimate the adjusted seroprevalence we used the epi.prev function with the dataset of all the 

participants in the serology part of the survey and the estimated specificity and sensitivity of the 

RDT from the BLCM. 

RDT 
## Studies 1-6 <- https://www.finddx.org/sarscov2-eval-antibody/ 
## Study 7 <- https://open.fda.gov/apis/device/covid19serology/ 
https://www.accessdata.fda.gov/cdrh_docs/presentations/maf/maf3274-a001.pdf 
S1sens <- 0.667 
S1spec <- 1 
S1pos <- 96 
S1neg <- 102 

https://www.finddx.org/sarscov2-eval-antibody/
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TP1 <- round(S1sens*S1pos) 
TN1 <- round(S1spec*S1neg) 
FN1 <- S1pos-TP1 
FP1 <- S1neg-TN1 
S2sens <- 0.719 
S2spec <- 0.991 
S2pos <- 166 
S2neg <- 196 
TP2 <- round(S2sens*S2pos) 
TN2 <- round(S2spec*S2neg) 
FN2 <- S2pos-TP2 
FP2 <- S2neg-TN2 
S3sens <- 0.577 
S3spec <- 0.976 
S3pos <- 317 
S3neg <- 125 
TP3 <- round(S3sens*S3pos) 
TN3 <- round(S3spec*S3neg) 
FN3 <- S3pos-TP3 
FP3 <- S3neg-TN3 
S4sens <- 0.820 
S4spec <- 0.990 
S4pos <- 579 
S4neg <- 423 
TP4 <- round(S4sens*S4pos) 
TN4 <- round(S4spec*S4neg) 
FN4 <- S4pos-TP4 
FP4 <- S4neg-TN4 
S5sens <- 0.807 
S5spec <- 0.996 
S5pos <- 262 
S5neg <- 298 
TP5 <- round(S5sens*S5pos) 
TN5 <- round(S5spec*S5neg) 
FN5 <- S5pos-TP5 
FP5 <- S5neg-TN5 
S6sens <- 0.897 
S6spec <- 0.984 
S6pos <- 483 
S6neg <- 321 
TP6 <- round(S6sens*S6pos) 
TN6 <- round(S6spec*S6neg) 
FN6 <- S6pos-TP6 
FP6 <- S6neg-TN6 
S7sens <- 0.763 
S7spec <- 0.988 
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S7pos <- 30 
S7neg <- 80 
TP7 <- round(S7sens*S7pos) 
TN7 <- round(S7spec*S7neg) 
FN7 <- S7pos-TP7 
FP7 <- S7neg-TN7 
AuditC5 <- data.frame(TP = c(TP1, TP2, TP3, TP4, TP5, TP6, TP7), 
FN = c(FN1, FN2, FN3, FN4, FN5, FN6, FN7), 
FP = c(FP1, FP2, FP3, FP4, FP5, FP6, FP7), 
TN = c(TN1, TN2, TN3, TN4, TN5, TN6, TN7)) 
AuditC5$names <- c("Study 1", "Study 2", "Study 3","Study 4", "Study 5", "Study 6", "Study 
7") 
sens_logit_rdt <- metaprop(AuditC5$TP, AuditC5$TP + AuditC5$FN, comb.fixed=F, 
comb.random=T, sm="PLOGIT", method = "GLMM", method.ci="CP", 
studlab=AuditC5$names) 
spec_logit_rdt <- metaprop(AuditC5$TN, AuditC5$TN + AuditC5$FP, comb.fixed=FALSE, 
comb.random=TRUE, sm="PLOGIT", method.ci="CP", studlab=AuditC5$names) 
 
Outputs (Appendix Figures 1, 2) 
##Estimation of the adjusted seroprevalence with a given sensitivity and specificity of a test 
adj_serop_overall <- epi.prev(nrow(sero[test_result_cat=="Positive", ]), 
nrow(sero[!is.na(test_result_cat) & outcome == "done", ]), 
se = 0.766, sp = 0.990) 
adj_serop_o50 <- epi.prev(nrow(sero[age_group == "[50,Inf)" & test_result_cat=="Positive", ]), 
nrow(sero[age_group == "[50,Inf)" & !is.na(test_result_cat) & outcome == "done", ]), 
se = 0.766, sp = 0.990) 
adj_serop_35_50 <- epi.prev(nrow(sero[age_group == "[35,50)" & test_result_cat=="Positive", 
]), 
nrow(sero[age_group == "[35,50)" & !is.na(test_result_cat) & outcome == "done", ]), 
se = 0.766, sp = 0.990) 
adj_serop_20_35 <- epi.prev(nrow(sero[age_group == "[20,35)" & test_result_cat=="Positive", 
]), 
nrow(sero[age_group == "[20,35)" & !is.na(test_result_cat) & outcome == "done", ]), 
se = 0.766, sp = 0.990) 
adj_serop_5_20 <- epi.prev(nrow(sero[age_group == "[5,20)" & test_result_cat=="Positive", ]), 
nrow(sero[age_group == "[5,20)" & !is.na(test_result_cat) & outcome == "done", ]), 
se = 0.766, sp = 0.990) 
adj_serop_0_5 <- epi.prev(nrow(sero[age_group == "[0,5)" & test_result_cat=="Positive", ]), 
nrow(sero[age_group == "[0,5)" & !is.na(test_result_cat) & outcome == "done", ]), 
se = 0.766, sp = 0.990) 
ELISA 
## Calculating the sens and spec of the ELISA test through a meta-analysis 
## Study 1 <- Kr?ttgen A, Cornelissen CG, Dreher M, Hornef M, Im?hl M, Kleines M. 
Comparison of four new commercial serologic assays for determination of SARS-CoV-2 IgG. J 
Clin Virol. 2020;128:104394. doi:10.1016/j.jcv.2020.104394 
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## Study 2 <- https://open.fda.gov/apis/device/covid19serology/ 
https://www.accessdata.fda.gov/cdrh_docs/presentations/maf/maf3246-a001.pdf 
## Study 3 <- Kohmer N, Westhaus S, R?hl C, Ciesek S, Rabenau HF. Brief clinical evaluation 
of six high-throughput SARS-CoV-2 IgG antibody assays. J Clin Virol. 2020;129:104480. 
doi:10.1016/j.jcv.2020.104480 
## Study 4 <- https://www.finddx.org/sarscov2-eval-antibody/ 
S1sens_el <- 0.864 
S1spec_el <- 0.962 
S1pos_el <- 22 
S1neg_el <- 53 
TP1 <- round(S1sens_el*S1pos_el) 
TN1 <- round(S1spec_el*S1neg_el) 
FN1 <- S1pos_el-TP1 
FP1 <- S1neg_el-TN1 
S2sens_el <- 0.900 
S2spec_el <- 1 
S2pos_el <- 30 
S2neg_el <- 80 
TP2 <- round(S2sens_el*S2pos_el) 
TN2 <- round(S2spec_el*S2neg_el) 
FN2 <- S2pos_el-TP2 
FP2 <- S2neg_el-TN2 
S3sens_el <- 0.711 
S3spec_el <- 1 
S3pos_el <- 45 
S3neg_el <- 22 
TP3 <- round(S3sens_el*S3pos_el) 
TN3 <- round(S3spec_el*S3neg_el) 
FN3 <- S3pos_el-TP3 
FP3 <- S3neg_el-TN3 
S4sens_el <- 0.600 
S4spec_el <- 0.99 
TP4 <- 55 
TN4 <- 294 
FN4 <- 37 
FP4 <- 2 
AuditC5_el <- data.frame(TP = c(TP1, TP2, TP3, TP4), 
FN = c(FN1, FN2, FN3, FN4), 
FP = c(FP1, FP2, FP3, FP4), 
TN = c(TN1, TN2, TN3, TN4)) 
AuditC5_el$names <- c("Study 1", "Study2", "Study 3", "Study 4") 
sens_logit_el <- metaprop(AuditC5_el$TP, AuditC5_el$TP + AuditC5_el$FN, comb.fixed=F, 
comb.random=T, sm="PLOGIT", method = "GLMM", method.ci="CP", 
studlab=AuditC5_el$names) 
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spec_logit_el <- metaprop(AuditC5_el$TN, AuditC5_el$TN + AuditC5_el$FP, 
comb.fixed=FALSE, comb.random=TRUE, sm="PLOGIT", method.ci="CP", 
studlab=AuditC5_el$names) 
Outputs (Appendix Figures 3, 4) 
 
Adjustment 2 – R Code 
BLCM model definition: 
model{ 
## Observation layer: 
# Complete observations (N=825): 
for(p in 1:Populations){ 
Tally_RR[1:4,p] ~ dmulti(prob_RR[1:4,p], N_RR[p]) 
prob_RR[1:4,p] <- se_prob[1:4,p] + sp_prob[1:4,p] 
} 
## Observation probabilities: 
for(p in 1:Populations){ 
# Probability of observing RDT- ELISA- from a true positive:: 
se_prob[1,p] <- prev[p] * ((1-se[1])*(1-se[2]) +covse12) 
# Probability of observing RDT- ELISA- from a true negative:: 
sp_prob[1,p] <- (1-prev[p]) * (sp[1]*sp[2] +covsp12) 
# Probability of observing RDT+ ELISA- from a true positive:: 
se_prob[2,p] <- prev[p] * (se[1]*(1-se[2]) -covse12) 
# Probability of observing RDT+ ELISA- from a true negative:: 
sp_prob[2,p] <- (1-prev[p]) * ((1-sp[1])*sp[2] -covsp12) 
# Probability of observing RDT- ELISA+ from a true positive:: 
se_prob[3,p] <- prev[p] * ((1-se[1])*se[2] -covse12) 
# Probability of observing RDT- ELISA+ from a true negative:: 
sp_prob[3,p] <- (1-prev[p]) * (sp[1]*(1-sp[2]) -covsp12) 
# Probability of observing RDT+ ELISA+ from a true positive:: 
se_prob[4,p] <- prev[p] * (se[1]*se[2] +covse12) 
# Probability of observing RDT+ ELISA+ from a true negative:: 
sp_prob[4,p] <- (1-prev[p]) * ((1-sp[1])*(1-sp[2]) +covsp12) 
} 
## Priors: 
# Prevalence in population [0,5): 
prev[1] ~ dbeta (1,1) 
# Prevalence in population [5,20): 
prev[2] ~ dbeta (1,1) 
# Prevalence in population [20,35): 
prev[3] ~ dbeta (1,1) 
# Prevalence in population [35,50): 
prev[4] ~ dbeta (1,1) 
# Prevalence in population [50,Inf): 
prev[5] ~ dbeta (1,1) 
# Sensitivity of RDT test: 
se[1] ~ dbeta(61.22,19.40)T(1-sp[1], ) 
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# Specificity of RDT test: 
sp[1] ~ dbeta(965.86, 10.74) 
# Sensitivity of ELISA test: 
se[2] ~ dbeta(21.77, 7.24)T(1-sp[2], ) 
# Specificity of ELISA test: 
sp[2] ~ dbeta(332.21, 4.01) 
# Covariance in sensitivity between RDT and ELISA tests: 
# covse12 ~ dunif( (se[1]-1)*(1-se[2]) , min(se[1],se[2]) - se[1]*se[2] ) ## if the sensitivity of 
these tests may be correlated 
covse12 <- 0 ## if the sensitivity of these tests can be assumed to be independent 
# Covariance in specificity between RDT and ELISA tests: 
# covsp12 ~ dunif( (sp[1]-1)*(1-sp[2]) , min(sp[1],sp[2]) - sp[1]*sp[2] ) ## if the specificity of 
these tests may be correlated 
covsp12 <- 0 ## if the specificity of these tests can be assumed to be independent 
} 
#monitor# se, sp, prev, covse12, covsp12 
## Inits: 
inits{ 
"se" <- c(0.5, 0.99) 
"sp" <- c(0.99, 0.75) 
"prev" <- c(0.05, 0.95, 0.05, 0.95, 0.05) 
# "covse12" <- 0 
# "covsp12" <- 0 
} 
inits{ 
"se" <- c(0.99, 0.5) 
"sp" <- c(0.75, 0.99) 
"prev" <- c(0.95, 0.05, 0.95, 0.05, 0.95) 
# "covse12" <- 0 
# "covsp12" <- 0 
} 
## Data: 
data{ 
"Populations" <- 5 
"N_RR" <- c(60, 312, 214, 136, 103) 
"Tally_RR" <- structure(c(44, 1, 9, 6, 161, 25, 56, 70, 126, 16, 36, 36, 68, 10, 24, 34, 44, 8, 13, 
38), .Dim = c (4,5)) 
} 
##Model call 
# Set different starting values for the three different chains to assess convergence 
inits1 = list(".RNG.name" ="base::Mersenne-Twister", 
".RNG.seed" = 100022) 
inits2 = list(".RNG.name" ="base::Mersenne-Twister", 
".RNG.seed" = 300022) 
inits3 = list(".RNG.name" ="base::Mersenne-Twister", 
".RNG.seed" = 500022) 
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run.jags("./autohw.bug", 
inits=list(inits1, inits2, inits3), 
n.chains = 3, 
burnin = 10000, 
sample = 100000, 
adapt = 1000, 
) 
## Calculating the adjusted seroprevalence 
adj_bay_serop_overall <- epi.prev(nrow(sero[test_result_cat=="Positive", ]), method = "c-p", 
nrow(sero[!is.na(test_result_cat) & outcome == "done", ]), 
se=0.619, sp=0.989) 
adj_bay_serop_o50 <- epi.prev(nrow(sero[age_group == "[50,Inf)" & 
test_result_cat=="Positive", ]), 
nrow(sero[age_group == "[50,Inf)" & !is.na(test_result_cat) & outcome == "done", ]), 
0.619, 0.989) 
adj_bay_serop_35_50 <- epi.prev(nrow(sero[age_group == "[35,50)" & 
test_result_cat=="Positive", ]), 
nrow(sero[age_group == "[35,50)" & !is.na(test_result_cat) & outcome == "done", ]), 
0.619, 0.989) 
adj_bay_serop_20_35 <- epi.prev(nrow(sero[age_group == "[20,35)" & 
test_result_cat=="Positive", ]), 
nrow(sero[age_group == "[20,35)" & !is.na(test_result_cat) & outcome == "done", ]), 
0.619, 0.989) 
adj_bay_serop_5_20 <- epi.prev(nrow(sero[age_group == "[5,20)" & 
test_result_cat=="Positive", ]), 
nrow(sero[age_group == "[5,20)" & !is.na(test_result_cat) & outcome == "done", ]), 
0.619, 0.989) 
adj_bay_serop_0_5 <- epi.prev(nrow(sero[age_group == "[0,5)" & test_result_cat=="Positive", 
]), 
nrow(sero[age_group == "[0,5)" & !is.na(test_result_cat) & outcome == "done", ]), 
0.619, 0.989) 
BLCM Output 

JAGS model summary statistics from 300000 samples (chains = 3; adapt+burnin = 11000): 
Lower95 Median Upper95 Mean SD Mode MCerr MC%ofSD SSeff 
se[1] 0.5682 0.61911 0.66909 0.61905 0.025775 -- 0.00015081 0.6 29209 
sp[1] 0.98247 0.9894 0.99494 0.98908 0.0032768 -- 0.000018919 0.6 30000 
se[2] 0.72266 0.77446 0.82388 0.77415 0.025912 -- 0.0001496 0.6 30000 
sp[2] 0.9697 0.98578 0.99721 0.98457 0.0075763 -- 0.000043742 0.6 30000 
AC.10 psrf 
se[1] 0.0020527 0.99999 
sp[1] -0.000081098 1.0001 
se[2] 0.00016124 1.0002 
sp[2] 0.00051855 1.0001 
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Examples of output are provided for the estimation of RDT sensitivity (Appendix Figures 

5–8); estimation of RDT specificity (Appendix Figures  9–12); ELISA sensitivity (Appendix 

Figures 13–16), and ELISA specificity (Appendix Figures 17–20). 

Discussion of Mortality Data 

In the mortality survey we have tried to set a start of the recall period that would be easy 

to remember for the head of the households who would be the ones reporting about the deaths in 

their households. From previous experiences in mortality surveys, using special events or dates 

makes it easier for the respondents to provide more accurate information. Given that in the local 

calendar there was no other special event in January and February, we considered having January 

1, 2019 as the starting date for the recall period. We acknowledge that there are some limitations 

with this approach and that recall bias could also affect the death rates specially for the 

prepandemic period, but we tried to tackle this through the training of the surveyors and the 

supervisors in the survey. For the selection of the starting of the pandemic period, and given the 

limited testing capacity available in country at the time, we considered that the virus was 

circulating earlier than March 13, the date of the first officially reported case, so we chose to 

select the start of month of March 2020 for the beginning of the Pandemic period. In regards of 

visual household-reported death excess starting in March 2020 (Figure), what we thought is that 

the first month of the pandemic the deaths were even more underreported (probably because of 

testing capacity and the delay on setting up the surveillance system for monitoring cases and 

deaths related to COVID-19). We suspect the virus was circulating and infecting humans before 

the first case was reported, which could explain the excess deaths in March 2020. 

Finally, we considered determining an estimation of the infection fatality rate (IFR) using 

the results from the survey. Because we did not have reliable mortality data for Omdurman 

outside of the survey and could not be sure of the cause of death for the excess deaths estimated, 

we agreed that including this estimation could have been misleading. The IFR projected for 

Africa ranged between 0.004% in Botswana and Central African Republic to 0.67% in South 

Africa or 1.53% in Nigeria (25,26). 
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Appendix Table 1. Causes of death by age group in study of mortality and SARS-CoV-2 seroprevalence, Sudan* 
Cause of death <20 y 20–34 y 35–49 y ≥50 y Total 
Accident / Trauma 4 (12.9) 7 (22.6) 6 (19.4) 14 (45.2) 31 (100.0) 
Cancer 1 (4.3) 2 (8.7) 5 (21.7) 15 (65.2) 23 (100.0) 
Chronic kidney disease 0 (0.0) 0 (0.0%) 0 (0.0) 1 (100.0) 1 (100.0) 
COVID-19  1 (11.1) 0 (0.0) 1 (11.1) 7 (77.8) 9 (100.0) 
Diarrhea 1 (14.3) 1 (14.3) 0 (0.0) 5 (71.4) 7 (100.0) 
Don't know 7 (13.0) 3 (5.6) 4 (47.4) 40 (74.1) 54 (100.0) 
Isolated fever / Malaria 1 (7.7) 2 (15.4) 2 (15.4) 8 (61.5) 13 (100.0) 
Malnutrition 1 (50.0) 0 (0.0) 0 (0.0) 1 (50.0) 2 (100.0) 
NCD 1 (1.2) 2 (2.3) 12 (14.0) 71 (82.6) 86 (100.0) 
Neonatal death/disease 11 (91.7) 1 (8.3) 0 (0.0) 0 (0.0) 12 (100.0) 
Others 6 (11.5) 6 (11.5) 7 (13.5) 33 (63.5) 52 (100.0) 
Pregnancy/childbirth related deaths 3 (50.0) 2 (33.3) 1 (16.7) 0 (0.0) 6 (100.0) 
Respiratory diseases 5 (29.4) 1 (5.9) 2 (11.8) 9 (52.9) 17 (100.0) 
Unknown 9 (0.0) 0 (0.0) 0 (0.0) 1 (100.0) 1 (100.0) 
Violence 1 (20) 3 (60.0) 0 (0.0) 1 (20.0) 5 (100.0) 
Total 43 (13.5) 30 (9.4) 40 (12.5) 206 (64.6) 319 (100.0) 
*Values are expressed as no. (%). COVID-19, coronavirus disease; NCD, non-communicable disease; SARS-CoV-2, severe acute respiratory syn-
drome coronavirus 2. 
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Appendix Table 2. Causes of death by age group and study period in study of mortality and SARS-CoV-2 seroprevalence, Sudan* 

Cause of death 
<20 y  20–34 y  35–49 y   ≥50 y  Total 

PREP PAND  PREP PAND  PREP PAND   PREP PAND  PREP PAND 
Accident / trauma 1 (5) 3 (13)  1 (10) 6 (30)  5 (31) 1 (4)   6 (8) 8 (6)  13 (10) 18 (9) 
Cancer 1 (5) 0 (0)  1 (10) 1 (5)  2 (12) 3 (12)   6 (8) 9 (7)  10 (8) 13 (7) 
Chronic kidney disease 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)   1 (1) 0 (0)  1 (1) 0 (0) 
COVID-19 0 (0) 1 (4)  0 (0) 0 (0)  0 (0) 1 (4)   0 (0) 7 (6)  0 (0) 9 (5) 
Diarrhea 0 (0) 1 (4)  1 (10) 0 (0)  0 (0) 0 (0)   1 (1) 4 (3)  2 (2) 5 (3) 
Don't know 2 (10) 5 (22)  1 (10) 2 (10)  2 (12) 2 (8)   19 (24) 21 (17)  24 (19) 30 (16) 
Isolated fever / malaria 1 (5) 0 (0)  1 (10) 1 (5)  1 (6) 1 (4)   2 (2) 6 (5)  5 (4) 8 (4) 
Malnutrition 1 (5) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)   0 (0) 1 (1)  1 (1) 1 (1) 
NCD 0 (0) 1 (4)  0 (0) 2 (10)  5 (31) 7 (29)   28 (35) 43 (34)  33 (26) 53 (27) 
Neonatal death/disease 6 (30) 5 (22)  0 (0) 1 (5)  0 (0) 0 (0)   0 (0) 0 (0)  6 (5) 6 (3) 
Others 2 (10) 4 (17)  2 (20) 4 (20)  1 (6) 6 (25)   15 (19) 18 (14)  20 (16) 32 (17) 
Pregnancy/childbirth re-
lated 

2 (10) 1 (4)  2 (20) 0 (0)  0 (0) 1 (4)   0 (0) 0 (0)  4 (3) 2 (1) 

Respiratory infections 4 (20) 1 (4)  0 (0) 1 (5)  0 (0) 2 (8)   2 (2) 7 (6)  6 (5) 11 (6) 
Unknown 0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)   0 (0) 1 (1)  0 (0) 1 (1) 
Violence 0 (0) 1 (4)  1 (10) 2 (10)  0 (0) 0 (0)   0 (0) 1 (1)  1 (1) 4 (2) 
Total (n) 20 (100) 23 

(100) 
 10 

(100) 
20 

(100) 
 16 

(100) 
24 

(100) 
  80 

(100) 
126 

(100) 
 126 

(100) 
193 

(100) 
*No major differences were found between the two periods stratified by age groups. PREP, Prepandemic period, January 1, 2019– February 29, 2020. PAND, pandemic 
period, March 1, 2020, until the end of the survey. NCD, non-communicable disease. 

 

The most common cause of death as reported by the heads of households were non–

communicable diseases, followed by trauma/accidents and cancer 

Appendix Table 3. Summary of symptoms reported before death in prepandemic and pandemic periods in study of mortality and 
SARS-CoV-2 seroprevalence, Sudan* 
Symptom Prepandemic, n (%) Pandemic, n (%) p value 
Fever 16 (12.7) 32 (16.6) <0.001 
Cough 7 (5.6) 18 (9.3) 0.288 
Shortness of breath 19 (15.1) 28 (14.5) 0.873 
Weakness/Fatigue 14 (11.1) 30 (15.5) 0.32 
Extreme fatigue 6 (4.8) 22 (11.4) 0.044 
Headaches 8 (6.3) 20 (10.4) 0.233 
Muscle pain 6 (4.8) 23 (11.9) 0.044 
Sore throat 3 (2.4) 3 (1.6) 0.684 
Runny nose 1 (0.8) 1 (0.5) >0.999 
Loss appetite 6 (4.8) 20 (10.4) 0.094 
Diarrhea 7 (5.6) 11 (5.7) >0.999 
Change mental state 5 (4.0) 5 (2.6) 0.524 
Loss taste/odour 1 (0.8) 1 (0.5) >0.999 
No symptoms 51 (40.5) 67 (4.7) 0.343 
Don't know 25 (19.8) 40 (20.7) 0.888 
*Reported symptoms before death were similar during both periods, apart from more commonly reported extreme fatigue and muscle pain 
during the pandemic period. 
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Appendix Table 4. Reported comorbidities for deaths during the prepandemic and pandemic periods in study of mortality and 
SARS-CoV-2 seroprevalence, Sudan* 
Location Prepandemic, n (%) Pandemic, n (%) p value 
Asthma 0 (0.0) 3 (3.6) 0.553 
Autoimmune disease (polyarthritis, Crohn’s dis-
ease, lupus, multiple sclerosis…) 

1 (2.1) 2 (2.4) >0.999 

Cancer 3 (6.2) 6 (7.1) >0.999 
Chronic lung disease 0 (0.0) 1 (1.2) >0.999 
Congestive heart failure 3 (6.2) 1 (1.2) 0.136 
Coronary heart disease 3 (6.2) 7 (8.3) 0.747 
Current smoker 0 (0.0) 1 (1.2) >0.999 
Diabetes 11 (22.9) 19 (22.6) >0.999 
Hepatitis B 0 (0.0) 1 (1.2) >0.999 
Hypertension 16 (33.3) 24 (28.6) 0.563 
Kidney disease 5 (10.4) (7 (8.3) 0.757 
Other 6 (12.5) 12 (14.3) >0.999 
*We saw no differences between the 2 periods for rates of comorbidities. 

 
 
Appendix Table 5. Access to healthcare in the prepandemic and pandemic periods in study of mortality and SARS-CoV-2 
seroprevalence, Sudan* 
Access to healthcare Pre-pandemic, n (%) Pandemic, n (%) p value 
Health center 4 (5.0) 10 (8.3) 0.413 
Hospital 66 (82.5) 90 (75.0) 0.227 
Other 1 (1.2) 1 (0.8) >0.999 
Pharmacist 0 (0.0) 1 (0.8) >0.999 
Self-medication: modern medicine 8 (10.0) 18 (15.0) 0.392 
Self-medication: traditional medicine 1 (1.2) 0 (0.0) 0.400 
*No major differences in the access to health facilities and place of death were seen between the two periods. 

 
 
Appendix Table 6. Location of death for the prepandemic and pandemic periods in study of mortality and SARS-CoV-2 
seroprevalence, Sudan* 
Location of death Prepandemic, n (%) Pandemic, n (%) p value 
Don't know 1 (0.8) 0 (0.0) 0.395 
Health center 1 (0.8) 3 (1.6) >0.999 
Home 55 (43.7) 91 (47.2) 0.567 
Hospital 63 (50) 87 (45.1) 0.423 
On the way to the health center/hos-
pital 

1 (0.8) 6 (3.1) 0.251 

Other 5 (4) 6 (3.1) 0.758 
*No major differences in the place of death were seen between the two periods. 

 
Appendix Table 7. Status of consent by age group and sex to participate in study of SARS-CoV-2 seroprevalence, Sudan 

Age group 
Consented, n (%)  Refused, n (%)  Absent, n (%) 

F M  F M  F M 
<5 y 130 (43.5) 169 (56.5)  66 (58.4) 47 (41.6)  14 (48.3) 15 (51.7) 
5–19 y 424 (54.0) 361 (46.0)  123 (46.4) 142 (53.6)  124 (43.5) 161 (56.5) 
20–34 y 383 (60.9) 246 (39.1)  74 (40.9) 107 (59.1)  59 (26.5) 164 (73.5) 
35–49 y 217 (63.5) 125 (36.5)  20 (26.0) 57 (74.0)  27 (27.0) 73 (73.0) 
>50 y 159 (49.8) 160 (50.2)  37 (44.6) 46 (55.4)  19 (24.1) 60 (75.9) 
Total 2,374 (62.3)  719 (18.9)  716 (18.8) 

 
 
Appendix Table 8. Risk factors associated with a positive SARS-Cov-2 rapid antibody test, Sudan* 

Risk factor Crude OR (95% CI) 
Adjusted OR 

OR (95% CI) p-value 
Age† 1.01 (1.01–1.02) 1.01 (1.00–1.02) 0.001 
Sex‡ 0.82 (0.66–1.02) 0.84 (0.67–1.05) 0.127 
Past medical history§ 1.30 (1.00–1.69) 1.06 (0.79–1.42) 0.703 
Exposed to case in household¶ 1.68 (1.35–2.08) 1.61 (1.21–2.01) <0.001 
*OR = odds ratio. 
†Continuous variable. 
‡Reference value is female. 
§Reference value has a medical history.  
¶Reference value is have been exposed to a case within the household.  
Other than age, living with person who was seropositive led to a 1.68 (odds ratio [OR] 95% CI 1.35–2.08, p < 0.001 S7 Table) fold increase in the 
odds of being seropositive. Among all 555 included households, 364 (65.6%) had >1 positive household member and 203 household (36.6%) at least 
two. Sex was not a significant predictor for seroprevalence (p = 0.127). 
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Appendix Table 9. Summary of positive rapid serologic testing by antibody status in study of SARS-CoV-2 seroprevalence, Sudan* 
Age group Positive IgG ,n (%) Positive IgG and IgM ,n (%) Positive IgM ,n (%) Total ,n (%) 
<5 y 52 (92.9) 1 (1.8) 3 (5.4) 56 (100.0) 
5–19 y 218 (90.8) 19 (7.9) 3 (1.2) 240 (100.0) 
20–34 y 175 (78.5) 27 (12.1) 21 (9.4) 223 (100.0) 
35–49 y 112 (83.0) 17 (12.6) 6 (4.4) 135 (100.0) 
>50 y 134 (83.8) 22 (13.8) 4 (2.5) 160 (100.0) 
Total 691 (84.9) 86 (10.6) 37 (4.5) 814 (100.0) 
*Among those who tested positive, most presented IgG antibodies (84.9%), whereas 10.6% tested positive for both antibodies and 4.5% for IgM only. 

 
Appendix Table 10. Summary of ELISA and rapid test results in study of SARS-CoV-2 seroprevalence, Sudan* 
Result ELISA negative, n (%) ELISA positive, n (%) Total, n (%) 
RDT negative 443 (76.2) 138 (23.8) 581 (100.0) 
RDT positive 60 (24.6) 184 (75.4) 244 (100.0) 
Total 503 (61.0) 322 (39.0) 825 (100.0) 
* ELISA, enzyme-linked immunosorbent assay. RDT, rapid diagnostic test. 
825 samples were tested with the ELISA, of which 244 (29.6%) and 322 (39.0%) were positive for SARS-CoV-2 IgG by the RDT and 
ELISA respectively). Among 198 cases with discordant results considering ELISA as standard, 60 (30.0%) were false positives and 138 
(70.0%) false negatives according to the RDT. (serology). 

 
Appendix Table 11. Prevalence of SARS-CoV-2 antibodies based on rapid serologic test by age group and sex in study of SARS-
CoV-2 seroprevalence, Sudan* 

Age group 
Prevalence in female patients, 

% (95% CI) 
Prevalence in male patients, % 

(95% CI) Total, % (95% CI) 
<5 y 22.9 (17.0–30.1) 15.2 (9.7–23.1) 18.6 (14.0–24.2) 
5–19 y 32.1 (27.0–37.6) 28.7 (23.3–34.8) 30.5 (26.3–35.1) 
20–34 y 32.0 (27.3–37.1) 40.6 (33.0–48.7) 35.3 (30.7–40.3) 
35–49 y 40.5 (34.5–46.9) 37.4 (28.6–47.1) 39.4 (34.9–44.1) 
≥50 y 50.4 (41.5–59.2) 50.1 (42.8–57.4) 50.2 (44.0–56.5) 

 

 

Appendix Figure 1. Output of the metaprop function for the estimation of sensitivity of rapid diagnostic 

test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 
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Appendix Figure 2. Output of the metaprop function for the estimation of the specificity of rapid 

diagnostic test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 

 

 

Appendix Figure 3. Output of the metaprop function for the estimation of the sensitivity for the ELISA in 

study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 
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Appendix Figure 4: Output of the metaprop function for the estimation of the specificity of the ELISA in 

study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 

 

Appendix Figure 5: Output of the runjags function as a trace plot of the 3 chains to estimate the 

sensitivity of the rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan.  

 



 

Page 21 of 29 

 

Appendix Figure 6: Output of the runjags function as an ECDF plot showing the 3 overlapping chains to 

estimate the sensitivity of the rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient 

deaths, Sudan. 

 

Appendix Figure 7: Output of the runjags function as histograms of the combined chains to estimate the 

sensitivity of rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan.  



 

Page 22 of 29 

 

Appendix Figure 8: Output of the runjags function as an autocorrelation plot to estimate the sensitivity of 

rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 

 

 

Appendix Figure 9: Output of the runjags function as a trace plot of 3 stationary chains to estimate the 

specificity of rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 
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Appendix Figure 10: Output of the runjags function as an ECDF plot showing the 3 overlapping chains 

to estimate the specificity of rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient 

deaths, Sudan. 

 

Appendix Figure 11: Output of the runjags function as histograms of the combined chains to estimate 

the specificity of rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 
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Appendix Figure 12: Output of the runjags function as an autocorrelation plot to estimate the specificity 

of rapid diagnostic test in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 

 

Appendix Figure 13: Output of the runjags function as a trace plot of the 3 stationary chains to estimate 

the sensitivity of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 
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Appendix Figure 14: Output of the runjags function as an ECDF plot showing the 3 overlapping chains 

to estimate the sensitivity of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, 

Sudan. 

 

Appendix Figure 15: Output of the runjags function as histograms of the combined chains to estimate 

the sensitivity of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan..  
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Appendix Figure 16: Output of the runjags function as an autocorrelation plot to estimate the sensitivity 

of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 

 

Appendix Figure 17: Output of the runjags function as a trace plot of the 3 stationary chains to estimate 

the specificity of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan. 
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Appendix Figure 18: Output of the runjags function as an ECDF plot showing the 3 overlapping chains 

to estimate the specificity of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, 

Sudan. 

 

Appendix Figure 19: Output of the runjags function as histograms of the combined chains to estimate 

the specificity of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan.  



 

Page 28 of 29 

 

Appendix Figure 20: Output of the runjags function as an autocorrelation plot to estimate the specificity 

of the ELISA in study of SARS-CoV-2 seroprevalence and patient deaths, Sudan.  

 

Appendix Figure 21. Distribution of clusters of SARS-CoV-2 seroprevalence in the 34 administrative 

units in greater Omdurman, Sudan. 
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Appendix Figure 22. SARS-CoV-2 seroprevalence by age group in study of SARS-CoV-2 

seroprevalence and patient deaths, Sudan. 
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