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Despite sweeping control measures, SARS-CoV-2 
continues to pose a major threat to older persons 

and persons with comorbidities, both of whom can 
have poorer clinical outcomes (1,2). Thus, hospitals 
and long-term care facilities (LTCFs) must be particu-
larly vigilant to prevent the spread of SARS-CoV-2 
infection among their patients. Nosocomial spread 

has been an issue since the pandemic began in 2020, 
and many outbreaks have occurred in hospitals and 
healthcare facilities, often with high attack and mor-
tality rates (3).

To control nosocomial spread, healthcare facili-
ties have progressively implemented preventive mea-
sures, such as generalized masking, testing campaigns 
among patients and staff, isolation, visitor restrictions 
(3), and more recently vaccination (4). However, the 
risk for viral transmission among hospital patients 
and staff and the effectiveness of control measures re-
main unclear, and outbreaks still occur (3,5,6).

The basic reproduction number (R0) refers to 
the number of secondary infections caused by a 
single index infection in an otherwise susceptible 
population. R0 has been widely used as an indicator 
of SARS-CoV-2 epidemic risk and has also proved 
valuable for evaluating testing strategies and oth-
er preventive measures within healthcare settings 
(7,8). R0 likely varies between types of healthcare 
facilities and differs considerably from estimates 
in the general community (9). However, estimating 
R0 in healthcare settings is more challenging than 
estimating R0 in the community. The populations 
in institutions are small and epidemics are highly 
stochastic. More data usually are available from 
hospitals or wards that have more cases. Health-
care facilities rarely test patients randomly or at 
multiple times during their hospitalizations. Most 
available data from hospital outbreaks consist of 
distributions of positive tests over time in a context 
of evolving testing policy and capacity. 
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Outbreaks of SARS-CoV-2 infection frequently occur in 
hospitals. Preventing nosocomial infection requires in-
sight into hospital transmission. However, estimates of 
the basic reproduction number (R0) in care facilities are 
lacking. Analyzing a closely monitored SARS-CoV-2 out-
break in a hospital in early 2020, we estimated the pa-
tient-to-patient transmission rate and R0. We developed 
a model for SARS-CoV-2 nosocomial transmission that 
accounts for stochastic effects and undetected infections 
and fit it to patient test results. The model formalizes 
changes in testing capacity over time, and accounts for 
evolving PCR sensitivity at different stages of infection. 
R0 estimates varied considerably across wards, ranging 
from 3 to 15 in different wards. During the outbreak, the 
hospital introduced a contact precautions policy. Our re-
sults strongly support a reduction in the hospital-level R0 
after this policy was implemented, from 8.7 to 1.3, corre-
sponding to a policy efficacy of 85% and demonstrating 
the effectiveness of nonpharmaceutical interventions.
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At the beginning of the pandemic, most countries 
had no standard strategy or recommendation on how 
surveillance should be carried out and tests distrib-
uted. Testing was mostly conducted on symptom-
atic patients, and surveillance consisted of possible 
contact tracing around detected cases. However, un-
reported asymptomatic cases could represent a sub-
stantial fraction of transmissions, and little data on 
the testing policy are available to estimate how many 
cases fell through the gaps.

Here, we propose a new framework to analyze 
detailed hospital test data by using a stochastic 
transmission model explicitly accounting for test-
ing policy. We estimated R0 in the context of a large 
SARS-CoV-2 outbreak in a LTCF. The outbreak had a 
high initial R0, and we reconstructed the unobserved 
epidemic to assess effectiveness of nonpharmaceuti-
cal interventions.

Methods

Hospital and Patient Information
Available data came from a LTCF in Paris, France. 
The hospital has 3 buildings (A, B, and C), each of 
which has 4 floors (0–3) that we considered as sep-
arate wards. The results of all valid PCR tests were 
available for each patient identification number dur-
ing March 1–April 30, 2020 (61 days). Patient infor-
mation also included the ward to which they were 
admitted or transferred, admission and discharge 
dates, and any symptoms they had at first positive 
test. All dates we provide are relative to the date of 
the first positive sample in the facility. We censored 
the data from day 51 onward because the hospital 
began to change the containment policy after that 
point. We excluded 23 patients from any ward-level 
analysis because the ward in which they were tested 
was unknown (Appendix, https://wwwnc.cdc.gov/
EID/article/28/7/21-2339-App1.pdf). We only used 
anonymized, aggregated patient data and did not col-
lect additional patient data beyond those for clinical 
use. The Comité Local d’Ethique pour la Recherche 
Clinique des HUPSSD Avicenne-Jean Verdier-René 
Muret approved the study as protocol no. CLEA-
2021-190. 

Laboratory Testing
The LTCF collected all nasopharyngeal swab sam-
ples from patients. Reasons for testing included 
having symptoms characteristic of SARS-CoV-2, 
having had contact with a positive case, or patient 
transfer between wards or into or out of the hospi-
tal (Appendix).

Model Description
We modeled the spread of infection within the LTCF 
population by using a modified stochastic suscepti-
ble-exposed-infected-recovered model (Figure 1; Ap-
pendix, Appendix Table 1). We defined the force of 
infection at a given time, λ(t), as the per-capita rate 
at which susceptible persons become infected, which 
we determined by the transmission rate, β, and the 
proportion of infectious patients at that time (Appen-
dix). On the date the epidemic began (tinit), we con-
sidered a specific number (Einit) of persons infected. 
We assumed persons in infectious incubation had 
reduced infectiousness by a factor of ε, compared 
with symptomatic infected persons. Similarly, we as-
sumed asymptomatic infectious persons had lower 
infectiousness by a factor of κ1.

To fully determine transmission over the out-
break period, we compared 2 distinct models. In the 
primary model, we assumed a single transmission 
rate, β, throughout the study period. However, based 
on knowledge of changing practices within the hos-
pital, we defined a more complex, 2-phase model in 
which each phase had its own transmission rate, β1 
and β2, and was delimited by an inflection date, tinflect. 
Potential values for tinflect ranged from day 1, which 
was the date of the first positive sample, through day 
16, which was >1 week after the facility introduced 
contact precautions and France implemented a gen-
eralized lockdown.

We directly computed R0 for each stage of in-
fection from the transmission rate, duration of each 
infectious stage, and the probability infected per-
sons would become symptomatic (Appendix). For 
the 2-phase model, we computed the average R0 by 
weighting each phase by its duration (Appendix).

Observation Model
Because of asymptomatic infections, imperfect test 
sensitivity, and irregular availability of tests, the 
facility could not identify all infected patients. To 
account for the imperfect reporting, we added an 
observation model to the transmission model (Ap-
pendix, Appendix Figure 1). The observation model 
assumes all persons are initially untested, but upon 
testing, the model moves them to an equivalent test-
ed state. Any patient can be retested in the model, 
but retesting occurs at a reduced relative rate, ϕ, 
estimated directly from the number of tests and re-
tests in the available data (Appendix). When a per-
son in the model develops symptoms, they lose their 
tested status and rejoin the untested compartment, 
Is (Figure 1), enabling the model to account for in-
creased testing when symptoms appear in a patient.  
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However, testing does not change the rates of infec-
tiousness or disease progression.

We used hospital data on the number of admis-
sions, discharges, and tests per day as inputs (Ap-
pendix, Appendix Figure 2). The model considers 
admitted patients are in a susceptible untested state 
and are discharged at random from any state with 
a relative rate, μ, for symptomatic patients. For any 
day that tests are performed, the model prioritizes 
patients who have not been tested since becoming 
symptomatic and conducts any remaining tests at 
random on the rest of the population (Appendix, 
Appendix Figure 1). We used the sensitivity and 
specificity of the PCR test at the stage of infection to 
determine whether patients test positive or negative 
for SARS-CoV-2.

Statistical Inference
We calculated the likelihood by comparing the ob-
served numbers of positive and negative cases on 
each day with the expected numbers generated by 
the internal model state via the observation pro-
cess, assuming a binomial distribution (Appendix). 
We used iterative filtering in the pomp package 
(10) in R (R Foundation for Statistical Computing, 
https://www.r-project.org) to estimate parameters.  
In addition to estimating transmission rates, β, or 
β1 and β2, we also estimated the virus introduc-
tion time, tinit, and fixed the initial number of in-
fections, Einit, to 1. For each analysis comprising 
the same model, dataset, and fixed parameter val-
ues, we used profile likelihood to calculate 95% 
CI for the estimated parameters (Appendix). We  

Figure 1. Compartmental 
susceptible-exposed-infectious-
recovered model used to 
estimate nosocomial SARS-
CoV-2 transmission rates on 
the basis of data for a long-term 
care facility in France. Red 
boxes indicate SARS-CoV-2 
infectious compartments and 
blue boxes indicate noninfectious 
compartments. The left side 
shows the trajectory of untested 
persons, the right side shows 
tested persons. If untested 
persons are tested at any point 
in state X, they will enter the 
equivalent tested compartment 
(XT, right panel), which is 
epidemiologically identical 
except for the testing rate. 
Patients in the susceptible state 
(S) can become infected by 
contact with infectious patients. 
When infected, patients move 
to the noninfectious incubation 
(E) compartment, after which 
they can either enter an 
asymptomatic or a symptomatic 
pathway of infectiousness. 
Each pathway has an infectious 
incubation period (Ea, Es) before 
asymptomatic (Ia) or symptomatic 
(Is) infection begins. After full infection, patients recover into a noninfectious state (Rp) where they are still likely to test positive before full 
recovery (R) when the probability of testing positive diminishes to (1 – test specificity). Green arrows refer to processes, initiation (Init), 
admission (Adm), discharge (Dis), and testing (Test), that occur a specified number of times on a given day according to model inputs. 
Black arrows indicate processes that are natural for infection and are entirely stochastic (Appendix Methods, Figure 1). E, exposed; 
Ea, asymptomatic exposed; EaT, asymptomatic exposed and tested; Es, symptomatic exposed; EsT, symptomatic exposed and tested; 
ET, exposed and tested; I, infectious; Ia, asymptomatic infectious; IaT, asymptomatic infectious and tested; Is, symptomatic infectious; 
IsT, symptomatic infectious and tested; IT, infectious and tested; R, recovered; Rp, recovered to noninfectious state; RpT, recovered to 
noninfectious state and tested; RT, recovered and tested; S, susceptible; t, time; α, rate of progression from noninfectious incubation; ψ, 
proportion of patients entering symptomatic pathway; λ(t), force of infection at time t; α, rate of progression from infectious incubation; 
δ, rate of progression from symptomatic infection; μ, relative rate of discharge for symptomatic patients relative to any nonsymptomatic 
patient; ω, rate at which viral shedding ceases during recovery.
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compared models by calculating the Akaike infor-
mation criterion (AIC).

Model Inference Validation
As a preliminary step, we tested the model and in-
ference methodology on synthetic data. We used this 
test to ensure that known simulated transmission 
rates (β, or β1 and β2) and tinit could be recovered by 
statistical inference (Appendix).

Hospital- and Ward-Level Analyses 
We first analyzed data at the hospital level, assuming 
homogeneous mixing across all buildings and wards. 
We then analyzed the data and estimated parameters 
for each ward separately. After parameter estimation, 
we conducted simulations of the visible and unde-
tected parts of the epidemic at both the hospital and 
ward levels (Appendix).

Sensitivity Analysis and Time-Varying  
Reproduction Number
We conducted a sensitivity analysis to identify param-
eters with variations that most affected our estimated 
parameters. We perturbed the input parameters, using 
the lower and upper bound of the CI reported in the 
literature, and replicated the analysis. For comparison, 
we used incident cases to calculate the time-varying 
reproduction number (Rt) across the entire hospital by 
using the EpiEstim package (https://CRAN.R-project.
org/package=EpiEstim) (Appendix).

Results
A total of 459 patients were in the hospital during the 
study period. PCR testing began on day −6; we con-
sider day 1 as the first positive sample was collected. 
By the end of day 50, 152/312 patients sampled tested 
positive (Figure 2, panels A, B). The secondary attack 

Figure 2. Hospital data from a long-term care facility in France 
used to estimate nosocomial SARS-CoV-2 transmission rates. A) 
Number of SARS-CoV-2 PCR tests performed each week in the 
whole hospital. B) Number of SARS-CoV-2 PCR tests performed 
in each ward each week. C) Secondary attack rates in the whole 
hospital. Rates were calculated as the ratio of the number of 
patients with positive results to the total number of patients in the 
hospital at any time during the study period. 
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rate differed substantially between wards (Figure 2, 
panel C), ranging from 3% to 50%, and the overall sec-
ondary attack rate was 33%.

Model Inference Validation Results
The results of the validation of parameter inference 
on synthetic data suggest that sufficient power was 
available at the hospital level to recover parameters 
with relatively good accuracy (Appendix, Appendix 
Figures 4, 5). However, power was not always suf-
ficient at the ward level, and we restricted our sub-
sequent analysis of wards to only those where the 
recovered estimates did not deviate excessively in the 
estimates of β (Appendix Figures 6,7).

Whole-Hospital Analysis
We calculated estimations of transmission rates at 
the whole hospital level (Table 1; Appendix). In the 
2-phase model, using day 12 as tinflect gave the best 
model fit (Appendix Table 4), which is 6 days after 
the facility officially introduced an obligatory mask-
wearing policy and cancellation of all group activities 
between patients. This model proved a better fit to the 
data than the 1-phase model, as measured by the AIC 
(Table 1). Simulated curves from the observed epi-
demic produced by the models show that the 2-phase 
model captured the early peak in cases better than the 
1-phase model (Figure 3, panels A, B).

In the 2-phase model where tinflect = 12, we observed 
a notable difference between the transmission rates 
estimated before and after tinflect, which we assume to 
be attributable to the new contact precautions. The 
transmission rate fell from 1.3 (95% CI 0.8–2.4) to 0.19 
(95% CI 0.10–0.30) infections/patient/day in symp-
tomatic infection, corresponding to a drop in R0 from 
8.7 (95% CI 5.1–16.3) to 1.3 (95% CI 0.7–2.0). This re-
sult translates to an 85% (95% CI 66%–94%) decrease 
of the transmission risk after generalized implemen-
tation of contact precautions. Although the value of 
tinflect had a substantial effect on the absolute values 
of the transmission rates, the size of the decrease in 
transmission rate was relatively stable, ranging from 
81%–89% (Appendix Table 4). At peak prevalence of 
infectious patients, we estimated the proportion of 
undetected infections at 60%, and overall, ≈25% of 
cases were undetected over the entire study period 
(Figure 4, panel A).

Ward-Level Analysis
We calculated estimates and corresponding fits for 
each individual ward for which the 1-phase model 
could be validated (Table 2; Figure 3, panel B). We 
reconstructed the undetected parts of the epidemic 

(Figure 4, panel B). We also conducted ward-level 
analysis using the 2-phase model but this did not im-
prove the fit (Appendix, Appendix Table 5). 

Point estimates for β ranged from 0.42 to 2.13 
across the studied wards. We were only able to cal-
culate an upper bound for the transmission rate in 1 
ward, C3; the resulting range estimate of 0.42 (0.11–
1.30) infections/patient/day corresponds to an R0 of 
2.87 (0.75–8.84). However, we could estimate a lower 
bound for each ward; the highest value, 0.51 infec-
tions/patient/day in ward A2, corresponds to a mini-
mum R0 of 3.47.

Sensitivity Analysis Results
For most parameters, perturbing had relatively mi-
nor effects on the estimated transmission rates for the 
2 phases, or on tinit (Appendix, Appendix Figure 8). 
The transmission rate in the second phase, β2, was the 
most sensitive, and most markedly sensitive to the 
duration of symptomatic infection (1/δ).

Rt Results
We calculated Rt estimates by using EpiEstim (Ap-
pendix, Appendix Figure 9). The value was initially 
10, then fell to <3, before a second peak.

Discussion
We developed a specific framework to analyze 
SARS-CoV-2 data from a hospital outbreak using 
a transmission model of patient-to-patient infec-
tion. We estimated transmission rates from a LTCF 
during March–April 2020, across the entire hos-
pital and in individual wards. We assessed 1 or 2  

 
Table 1. Best estimates and ranges for parameters from 2 models 
applied to hospital data from a long-term care facility in France to 
estimate nosocomial transmission rates of SARS-CoV-2* 

Parameter 
Model 

1-phase 2-phase† 
 β 0.38 (0.30–0.60) NA 
 β1 NA 1.28 (0.76–2.40) 
 β2 NA 0.19 (0.10–0.30) 
R0 2.6 (2.0–4.1) NA 
 R0 before NA 8.72 (5.14–16.32) 
 R0 after NA 1.33 (0.68–2.04) 
 R0 combined NA 5.72 (3.62–8.70) 
Intervention efficacy‡ NA 0.85 (0.66–0.94) 
tinit −22 (−39 to −4) −4 (−25 to −1) 
AIC 657.33 628.85 
*The value of Einit was fixed at day 1 and the value of tinflect at day 12. The 
R0 values were calculated by using equations 4 and 5 (Appendix). AIC, 
Akaike information criterion; NA, not applicable; R0, basic reproduction 
number; β, current transmission rate per day; β1, transmission rate per day 
before inflection date; β2, transmission rate per day after inflection date; 
Einit, number of initial infections at date tinit; R0, basic reproduction number; 
tinit, date on which the initial infection occurs. 
†R0 was calculated before and after inflection date in the 2-phase model. 
‡The intervention efficacy was calculated as 1 – β2/β1. Days for tinit are 
relative to the first positive sample on day 1. 
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phases of transmission delimited by a specific 
change date (tinflect) corresponding to implementation 
of contact precautions, including obligatory mask-
wearing for patients and staff, and the cessation of  
group activities.

We found that the 2-phase model was better sup-
ported by the data aggregated across the entire hospi-
tal than a model with a single transmission rate, and 
the 2-phase model better captured the early peak in 
cases. Model validation suggested sufficient power 
to estimate transmission rates in 2 phases. The early 
phase rate (1.3 transmissions/patient/day) corre-
sponded to an early R0 of 8.7 and the late phase rate 
(0.19 transmissions/patient/day) corresponded to 
a late R0 of 1.3. This change in transmission rate can 
largely be explained by the initial absence of preven-
tive measures after the policy recommendation on 
day 6 and its gradual implementation over the next 
week. Under this assumption, the measures intro-
duced were 85% (95% CI 66%–94%) effective at re-
ducing transmission. The high estimates in the first 

phase suggest an explosive outbreak or superspread-
ing event, which is consistent with the high secondary 
attack rate (33%). The estimates in the second phase, 
after the updated policy, might be more representa-
tive of current transmission rates in hospitals, which 
can provide and encourage the use of personal pro-
tective equipment.

Little research is available for the effect of con-
tact precautions against SARS-CoV-2 transmission in 
healthcare settings. A meta-analysis of the effect of 
mask use against nosocomial transmission of coro-
naviruses found 67% protective efficacy of facemasks 
and 96% efficacy of N95 respirators (11), but the 1 
study involving SARS-CoV-2 only examined a protec-
tive effect for healthcare workers (HCWs), which was 
unquantifiable because no infections were reported 
in the masked group (12). Several modeling studies 
have quantified the level of mask wearing that would 
prevent epidemic spread of SARS-CoV-2 in the com-
munity (13–15; D. Kai et al., unpub. data, http://arx-
iv.org/abs/2004.13553), but studies of interventions 

Figure 3. Results of simulated epidemics in a model of nosocomial SARS-CoV-2 transmission using estimated parameters determined 
on the basis of data from a long-term care facility in France. A) 1-phase model for the whole hospital. B) 2-phase model for the whole 
hospital. C–F) 1-phase model for individual wards: A2 (C), C0 (D), C2 (E), and C3 (F). Red dots show the observed number of positive 
tests in the data, black dashed lines indicate the median across that date for all simulations, and gray shading indicates the 95% CI 
range of the simulated values. Input parameter sets were included if their likelihood fell within the 95% CI relative to the maximum 
likelihood for 1- and 2-phase models for the whole hospital and individual wards. Estimated parameters are from Tables 1, 2. Extinct 
epidemics (i.e., those having <3 cumulative cases) were excluded from the distribution.
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for prevention of patient-to-patient transmission in 
healthcare environments are lacking.

Few other studies have published estimates of 
R0 in healthcare settings. By analyzing the initial ex-
ponential growth phase of a hospital epidemic, one 
study computed an expedient estimate of R0 for pa-
tients (1.13) and hospital staff (1.21) (16), but that study 
did not account for asymptomatic infections and did 
not provide a range for the R0 estimates (17). In an-
other study, the authors estimated an R0 of 1.021 (95% 
CI 1.018–1.024) across 12 nursing homes based on a 
single introduction per floor of each institution and a 
secondary attack rate of 4.1% among 930 residents (B. 
Reyné et al., unpub. data, https://doi.org/10.1101/20
20.11.27.20239913). The heterogeneity of transmission 

between different wards was also demonstrated in a 
previous review and meta-analysis in which the au-
thors calculated an average observed reproduction 
number of 1.18 across 4 different healthcare settings 
(18), but showed much heterogeneity between set-
tings; 1 was 4.5, and 3 were <0.25. A fourth study ana-
lyzed several hospitals in Canada by using incident 
cases and estimated an R0 of 2.51, which ranged from 
0.56 to 9.17 in individual facilities (19). However, the 
authors of that study did not model asymptomatic 
infection or account for negative test results or the 
outcomes of testing at different infectious stages (19).

To assess how estimates vary when looking at 
smaller subpopulations, we separately fit a 1-phase 
model to data from each ward. Using this method, we 

Figure 4. Stacked prevalence of detected 
and undetected symptomatic and 
asymptomatic infections in simulated 
epidemics using a model of nosocomial 
SARS-CoV-2 transmission determined on 
the basis of data from a long-term care 
facility in France. A) Prevalence estimated 
by using the 2-phase model for the whole 
hospital. B–E) Prevalence estimated by 
using the 1-phase model for individual 
wards: A2 (B), C0 (C), C2 (D), and C3 (E). 
After excluding extinct simulations (i.e., 
those having <3 cumulative cases), we 
calculated the median of each prevalence 
measure for each date.

 
Table 2. Characteristics and parameter estimates in hospital wards in a long-term care facility in France used to estimate nosocomial 
transmission rates of SARS-CoV-2* 

Ward No. beds 
Total no. 
patients 

Day of first 
positive case No. cases β R0† tinit 

A2 48 62 11 30 1.29 (0.51–NE) 8.76 (3.47–NE) 2 (−14 to 29) 
C0 37 74 16 22 0.56 (0.22–NE) 3.79 (1.50–NE) 4 (−39 to 9) 
C2 37 48 7 15 2.13 (0.29–NE) 14.46 (1.97–NE) −8 (−39 to –14) 
C3 37 63 24 7 0.42 (0.11–1.30) 2.87 (0.75–8.84) 19 (−9 to 21) 
*Estimates and 95% CI for β, R0, and tinit are from the fitting the 1-phase model to data from each ward (Einit = 1). In many instances, the upper bound of 
the 95% CI for β, and in the most likely value of β for some wards, could not be estimated due to a flat likelihood surface, in which case the value is given 
as NE. NE, not estimated; β, current transmission rate per day; Einit, number of initial infections at date tinit; R0, basic reproduction number; tinit, date on 
which the initial infection occurs.  
†The R0 values were calculated using equation 4 (Appendix). 
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could not always estimate upper bounds of the trans-
mission rates, probably because of strong stochasticity 
and scarcity of observed cases, an inherent feature of 
SARS-CoV-2 in which a large proportion of infected 
persons remain asymptomatic. However, our valida-
tion analyses suggested that point estimates for trans-
mission rates across the wards could be consistently 
estimated. Applied to our dataset, estimated trans-
mission rates ranged from 0.4 to 2.1, corresponding to 
an R0 of 2.9–14.5. This heterogeneity might have been 
driven by differences in the timing of and compliance 
with preventive measures or by differences in contact 
patterns between staff and patients.

Calibrating models to real hospital outbreaks and 
estimating transmission rates provides more realistic 
transmission models to evaluate scenarios with alter-
native surveillance or control measures. We estimat-
ed the response to introducing barrier interventions 
at the beginning of the COVID-19 pandemic, when 
population immunity was minimal. Investigating al-
ternative scenarios involving contemporary levels of 
population immunity or other viral variants could be 
easily achieved by updating the model parameters, 
such as the initial level of immunity or transmission 
rates. Updating parameters would enable prediction 
of the probability and size of hospital outbreaks and 
evaluation of testing strategies to prevent spread. As 
mentioned, a major challenge in analyzing outbreaks 
in hospitals or other small, closed environments lies 
in the consideration of imperfect testing practice, 
which we addressed through the observation model. 
First, a substantial proportion of infectious persons 
were not symptomatic; therefore, they were less like-
ly to be tested, and we accounted for this difference in 
the model testing policy. Second, PCR test sensitivity 
is imperfect and depends on the time from infection, 
which is we also reflected in our evolving test sensi-
tivity for different stages of infection. Finally, testing 
procedures were not regular and might have been 
affected by many factors not directly related to the 
epidemiologic situation, such as the day of the week, 
the available testing capacity, or changing strategies 
at the local scale. We addressed irregular testing pro-
cedures by using the number of tests per day directly 
described in the data rather than determining the 
number of tests performed from the number of infect-
ed persons. The model also tracked testing status to 
include realistic probabilities for testing and retesting 
of patients.

We compared our results with Rt from the com-
monly used EpiEstim package, which demonstrated 
the additional value of our approach. Ignoring nega-
tive tests and the complexity of testing policies, this 

simpler approach captured the high initial R0 and 
subsequent fall but also showed a second peak that 
likely resulted from increased testing rather than an 
actual increase in transmission rate.

Our analysis has several limitations resulting 
from simplifying assumptions. First, we did not ac-
count for the possibility of imported infections other 
than the index case or cases; instead, we assumed 
that the force of infection from other patients would 
substantially outweigh that from the community. 
Second, because we had no data on infectious status 
for HCWs during the study period, we focused on 
patients and did not explicitly model acquisition by 
nor transmission from HCWs, although HCWs were 
implicitly considered potential vectors of patient-to-
patient transmission. Rates of transmission from in-
fectious patients to HCWs are relatively low (20,21), 
as are transmission rates from HCWs to patients (22), 
although these rates might have been higher in the 
early stages of the pandemic, considering low lev-
els of hand hygiene (23). Ignoring the contribution 
of HCWs to new infections in the analysis suggests 
that we might have overestimated the transmission 
risk from infectious patients, but our estimates can 
still be interpreted as valid measures of the nosoco-
mial risk to patients. Third, the model relies on pa-
rameters taken from the literature, which may be 
inaccurate. However, we conducted a sensitivity 
analysis to measure the sensitivity of transmission 
rates to appropriate variation in these parameters, 
and our main results remained unaffected. Finally, 
we note that the decision to analyze data from this 
hospital is partly due to the size of the outbreak, im-
plying a selection bias toward a higher transmission 
rate than would be typical across all hospitals. How-
ever, >44,000 nosocomial infections were reported 
in France by February 14, 2021 (24), most of which 
consisted of clusters of cases; thus, our results can be 
interpreted as plausible for a hospital at risk for an 
outbreak. In addition, the model framework we pro-
pose is suitable for estimating transmission rates in 
any healthcare environment, and we provide some 
guidance for adaptation (Appendix).

In conclusion, the novel dynamic modeling 
framework we propose realistically simulates evolv-
ing testing policies and could easily be used on simi-
lar nosocomial COVID-19 datasets. The model also 
could be adapted for specific epidemiologic features, 
such as patient isolation. Overall, our results under-
line both the substantial potential effect of protective 
interventions introduced in healthcare settings and 
the considerable heterogeneity in transmission rates 
between hospital wards.



 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 28, No. 7, July 2022 1353

R0 to Assess Nosocomial SARS-CoV-2 Transmission

Additional members of EMEA-MESuRS Working Group 
on the Nosocomial Modelling of SARS-CoV-2: Sophie 
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etymologia revisited
Mycobacterium chimaera
[mi’ko-bak-tēr’e-əm ki-mēr’ə]

Formerly an unnamed Mycobacterium sequevar within the  
M. avium–M. intracellulare–M. scrofulaceum group (MAIS),  

M. chimaera is an emerging opportunistic pathogen that can cause 
infections of heart valve prostheses, vascular grafts, and disseminat-
ed infections after open-heart surgery. Heater–cooler units used to  
regulate blood temperature during cardiopulmonary bypass have 
been implicated, although most isolates are respiratory. In 2004,  
Tortoli et al. proposed the name M. chimaera for strains that a reverse 
hybridization–based line probe assay suggested belonged to MAIS 
but were different from M. avium, M. intracellulare, or M. scrofulaceum. 
The new species name comes from the chimera, a mythological be-
ing made up of parts of 3 different animals.
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